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ABSTRACT

In response to the interest to re-use Palapa B2R satellite nearing its End of Life
(EOL) time, an idea to incline the satellite orbit in order to cover a new region has
emerged in the recent years. As a prolate dual-spin vehicle, Palapa B2R has to be
stabilized against its internal energy dissipation effect. This work is focused on
analyzing the dynamics of the reusable satellite in its inclined orbit. The study
discusses in particular the stability of the prolate dual-spin satellite in the effect of
perturbed field of gravity due to the inclination of its elliptical orbit. Palapa B2R
physical data was substituted into the dual-spin's equation of motion. The coefficient of
zonal harmonics J2 was induced into the gravity-gradient moment term that affects the
satellite attitude. The satellite's motion and attitude were then simulated in the
perturbed gravitational field by J2, with the variation of orbit's eccentricity and
inclination. The analysis of the satellite dynamics and its stability was conducted for
designing a control system for the vehicle in its new inclined orbit.

ABSTRAK

Sebagai reaksi atas adanya minat dari beberapa pihak untuk mengoperasikan
kembali satelit Palapa B2R yang mendekati masa akhir operasinya {End of Life), suatu
ide untuk menginklinasi orbit satelit telah mengemuka pada beberapa tahun terakhir.
Sebagai sebuah wahana dual-spin prolate, Palapa B2R harus distabilkan terhadap efek
disipasi energi internal. Paper ini berkonsentrasi pada analisis dinamik dari satelit
pada orbit barunya yang terinklinasi. Studi yang dilakukan mendiskusikan secara
khusus kestabilan dari satelit dual-spin prolate dalam pengaruh efek dari medan
gravitasi terganggu akibat inklinasi dari orbit eliptiknya. Data fisik Palapa B2R
disubstitusikan ke dalam persamaan gerak dual-spin. Koefisien harmonik zonal J2
diinduksikan ke persamaan momen gradient gravitasi yang mempengaruhi sikap
satelit. Gerak dan sikap satelit kemudian disimulasikan dengan variasi eksentrisitas
dan inklinasi orbitnya. Analisis dinamika dan kestabilan satelit dilakukan untuk
keperluan perancangan sistem kendali wahana pada orbit barunyayang terinklinasi.

1 INTRODUCTION meet this stability criterion, most of early

A semi-rigid body is stable only dual-spin vehicles were designed in an

when spinning about its major axis. In a
related study, Bracewell and Garriott
(Ref. [8] pp. 62-64) concluded that the
four turnstile wire antennae of Explorer |
were dissipating energy; thus, causing a
transfer of body spin axis from the
minimum inertia {prolate) to a transverse
axis of maximum inertia {oblate). To
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oblate configuration.

As a case of study, this work used
Palapa B2R physical data to analyze the
dynamics of the vehicle. Palapa B2R is a
communication satellite of Indonesia. In
its orbit, it was operated by PT. Telkom
(Indonesian Sate Telecommunication
Company). Near the satellite's End of Life



(EQL) time, several Africans and Polynesians
countries have shown interest to buy
and re-use Palapa B2R. Because of those
countries' location in the southern
latitudes, an idea emerged to incline the
satellite's orbit. The current paper
elaborates the analysis of the vehicle
dynamics in its inclined orbit.

2 REFERENCE COORDINATE SYSTEM
2.1 Body Reference Coordinate System
(Body Axes)

U W, =q
¥i
Figure 2-1: Platform axis components

The definition of Platform and
Body axes is well-defined in the
literature. Figure 2-1 are illustrated those
axes with their origin at the satellite's
e.g. while

Figure 2-2 are showed the axes in
the space. In this paper, the Platform
Axis Components will be identified as
Body Reference Coordinate System or
Body axis.

Xa
ot
¥ Y Pk Aw
COrbit ke
\ -
g
r‘/ o o
T

coordinate

Figure 2-2: Body reference

system

2.2 Stability  reference  coordinate
system (stability axes)
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Figure 2-3: Stability reference coordinate
system

Stability Reference Coordinate
System (Stability Axes) was defined as a
set of local horizon axes for the satellite.
It is a target axes for the satellite's Body
Axes to point its antennae to the Earth.
All these axes are presented in Figure 2-3.

2.3 Inertial reference coordinate system
(inertial axes)
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Figure 2-4: Inertial reference coordinate
system

Inertial Reference  Coordinate
System (Inertial Axes) is defined as a
geocentric non-rotating equatorial reference
frame with Zi axis which coincides with
the rotation axis of the Earth and points
to the North Pole; the Xi axis lies in
equatorial plane and points towards the
vernal equinox. The Yi axis completes a
right-handed Cartesian frame of reference
(Figure 2-4). In this Inertial Axis, Newton's
laws of motion are valid for the satellite's
translation and rotation.
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3 EULER ANGLES (ORIENTATION
ANGLES)

3.1 Orientation of
Inertial Axes
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Figure 3-1: Orientation of body axes in
inertial axes

In order to describe the attitude of
the satellite with respect to the Inertial
Axes (Figure 3-1), the Euler angles are
used.
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Figure 3-2: Euler angles of body axis in
inertial axis

The yaw angle ip, pitch angle 0
and roll angle cp, respectively defines the
angle of rotation in Z-, Y- and X- axis of
the Body frame with respect to its
nominal condition in Inertial Axes.

These angles are shown in Figure 3-2.
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3.2 Orientation of body axes in
stability axes
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Figure 3-3: Deviation of body axes from
stability axes

Euler Angles of Body Axes with
respect to Stability Axes are defined to
describe the attitude perturbation from
its local horizon (its stationary or
nominal condition) (Figure 3-3). If the
satellite deviates to large, the antennae
will point away from the Earth. The
Euler Angles are:
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Figure 3-4: Euler angles of body axis
with respect to stability axis

Yaw, Pitch and Roll Angle Deviation
(tfs, Os, and <9, which respectively
denotes the angle of perturbation
because of the rotation in Z-Y-, and X-
axis of the Body frame with respect to
Stability Axes.
These angles are shown in Figure 3-4.



4 GRAVITY GRADIENT MOMENT

Agrawal derived an expression for
Gravity Gradient Moment in Axially
Symmetric Spacecraft at Equatorial
Circular Orbit (Ref [1] pp. 131-133) with
this equation,
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It this paper the spacecraft will be
treated as a non-axially symmetric
vehicle. In addition, the satellite will be
operated in inclined elliptical orbit,
which means non-equatorial and non-
circular orbit. So, by following and
combining Kaplan's (Ref. [8] pp. 199-204)
and Agrawal's techniques in deriving the
equation of Gravity Gradient Moment for
Spacecraft, the authors derived the
equation of Gravity Gradient Moment for
Prolate Dual-Spin Satellite in its inclined
elliptical orbit.

The gravitational force (dFo)
corresponding to a differential element of
mass, dm, shown in Figure 4-1, is

dFg = g-diw ... ... Eq. 2

where g denotes gravity vector at dm.
The unsymmetrical mass distribution of
the Earth induced a zonal harmonic
coefficient (J, Ref [8 pp. 273-282) that
perturbs the homogenous of the Earth
gravity's field. In this work, the
oblateness of the Earth induced the
zonal harmonic coefficient that is limited
to second order, J2. The gravity vector
equation at a point in space is

_-wp [ 3 .E]z.( Ry’ g Eq. 3
g b Jz[R |5 x- Fa

|

With pg = Earth gravitational
parameter; R and R = the distance from
the center of the Earth in scalar and
vectornotmjmx;&g-mchcightmcasured
perpendicular from the Earth equatorial
plane; Re = the radius of the Earth
equator.

Continuing to the
equation,

moment

M, = erchz erg—dm ........ Eq. 4

while the position of differential element
of mass, dm, in Figure is

R, =R4+P.cernrnarnnns .. Eq. 5

Therefore, substituting Eq. 5 to replace R
in Eq. 3, then inserting the result to Eq.
4, transform Eq. 4 into:

M, = - er
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Figure 4-2: Deviation from steady attitude

The use of Agrawal's technique to
work with Euler Angles between Body
Axis and Stability Axis see also Figure
3-4, yields (eg. 3.101, Ref. [1] p. 132),



Ry = R-sin6,
R, =—R-(sing -cosb)
Ry =—H-(cosd -co58.) ........ccoonnnrnn Eq. 7

Binomial Expansion is applied
into Eq. 6 and then Eq. 7 was inserted
into the result to give Gravity Gradient
Moment Equation. By linearizing the
equations, the Linearized Gravity
Moment Equations read,

Mgy =Gy - §s
Mg, =Gy -6
.MGZ “Gzles llllllllllllllllllllllllllllllllll qu 8

Where coefficients of ¢; and 6, are:

Gx =g;.|.(12B,_15)
Gy =g, 7 - Ix)

.................................... .9
Gy=g.°ly; Ba
And coefficient gy is,
. (105 p,
£= e (12 20, et
15 2\}
- = J.Re
L | R Eq. 10

The Rzv variable is the component

of satellite's position at Z-Axis in Earth.
The factor of inclination was induced in
Rz variable, because the height of the

satellite will be varying in the inclined
orbit. The factor of eccentricity was
induced in R variable. For e>0, the value
of Risvarying along the orbit.

5 ORBITAL MOTIONS
5.1 Parameters of Keplerian Orbit

Astronomy defines 6 quantities to
describe the orbit and position of heavenly
body, namely a, e, i, Q, a and r. The
definition of those parameters can be
found in many textbook in orbital
mechanics. Figure 5-2 describes the
geometry of the orbital parameters.
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Figure 5-1: Orbital plane orientation with
respect to inertial axes

5.2 Orbital Motion Equations
Simulation of the orbital motion

uses scalar differentials equation in Xi-
axis, Yi-axis and Z;-axis as follows:

5 _B

Ry, =R_?'Rx|

jévl =”R3_E‘Rw

B e BBalie ot 18t e Eq. 11
R3 Z1

The equation was derived by
relating Newton's Second Law of Motion
and Newton's Law for Gravitation. To
sketch the satellite's orbit, Eq. 11 were
integrated two times with 6 initial values,
initial velocityJ?%,, Rj, Rz, and 3
initial position Ry, Ry, and Rz, when

t=0. From Jenie (Ref. [6]), initial velocity
can be expressed by
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with transformation matrix C{*, and its
elements as follows:

Cll Cl! CH
dt =|Cy Cp Cyn
C]] C’ﬂ CT]

C,, = (cosw cos L) - sin @ cosisin 02)
C,, = (-sinwcos 2 —cos @ cosisin )
Cy; = (sinQ)sini)

C,, = (cos@sin Q +sin @ cosicos )
C,, = (—sin@sin 0 + cos Q cosw cosi)
C,, = (-sinicosQ)

Cy = (sin@siny)

Cyy = (cos ®sind)

Cy = (cos i)

When simulating the satellite’s
orbit, the orbital parameters are
G, =0°, Qo = 0o G = 00
ao = 8078.14 km
for circular orbit
R = 1700 km above the sea level;
for elliptic orbit with e=0.2, perigee,
Rperigee = 85 km above the sea level.

——

Figure 5-2: Velocities in orbit

In the state space model for
attitude dynamics, the satellite transversal
velocity that perpendicular to its radius
to the Earth, Ve, will be needed.

A. E. Roy (Ref, [9] p. 81) relates
sin@ in Figure 4-2 with eccentricity and
semimajor axis as follows:

1
~ | a*-(1-¢*) [?
N Bl i < A O MRS L Eq. 14
) [R-(z-a—R)

With Eq. 14, the component of
velocity in theta direction can be stated
as

6 DYNAMICS OF PROLATE DUAL SPIN
SATELLITE

Palapa B2R is a prolate configura-
tion Communication Satellite (HS 376).
In order to stabilize its attitude and
pointing direction, Palapa B2R uses its
rotor spinning. Control moments were
produced by the angular acceleration
and deceleration of the rotor's spin.
Because of the rotor's spinning motion
and the configuration of satellites inertia,
the satellite's motion in the yaw mode is
coupled with its roll mode. In addition,
by the imbalance from the satellite's
antennae reflector configuration (hz), the
satellite's motion in the pitch mode is
coupled with its yaw mode.

6.1 Dynamic Equations of Motion

Bryson has shown the equation of
spacecraft motion in De-Spin Active
Nutation Damping in Ref. [2 pp. 62-68].
In this work, the author will insert
gravity gradient moment as an external
moment that perturbs the satellite's
attitude. Using Bryson's technique in
deriving the De-Spin Active Nutation
Damping equations, the author adds
several modifications. The results are:

The Dynamics Equation at X-axis,
(g +13) p=(Is - Quo)r=My....... Eq. 16

The Dynamics Equation at Y-axis,

Iy g+1, -i-+(%i+c]-[i—*+l}q

# 5

+[N-Kl+c]'{y“z"'+i-5ﬂ=5‘v """ B, 17

. 8 o &

The Dynamics Equation at Z-axis,
Iz g+ Uy +1;)-F+(ls-,) p=M,... Eq. 18
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6.2 Dynamic Equations with Gravity
Gradient Moments
Substituting Mx in Eq. 16 with
Mg, in Eq. 8 yields the Dynamics Equation
at X-axis in Inclined Elliptical Orbit,
(Ix +I'r)'f’"(‘rs 'Qno)‘?’

Substituting My in Eq. 17 with
Mg, in Eq. 8 yields the Dynamics Equation
with Gravity Gradient Moments at Y-axis
in Inclined Elliptical Orbit,

My La bl s -q
Rd.c !S

+[£ﬁ+c).h,-gv.gs+;’ .&=0.. Eq. 20

L,-q‘v+1.,z-f+[

d . IS de

Finally, substituting Mz in Eq. 18
with Mg, in Eq. 8 yields the Dynamics
Equation at Z-axis in Inclined Elliptical
Orbit,

Ux +1y) p=(Ig-Qy)r

6.3 Kinematics Equations of Motion
6.3.1 Kinematics equations in inertial
axes

i

Figul:c 6-1: Rotation of local horizon Axes
(stability axes), n

Bryson has shown that the
equation of kinematics in relationship
between Euler Angle Rates and Angular
Velocity (Ref. [2] pp. 8-9) can be
approximated as
$=p+ny
@=q+n
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where n = orbital angular velocity. These
kinematics equations are derived in
Inertial Axis by Newton's first and
second law of motion.

6.3.2 Kinematics equations in inertial
axes

In the beginning of simulation, the
satellite's antennae still points to the
Earth for a moment. By the inertia (the
Newton first law of motion) the satellite's
attitude will drift at rotor spin axis with
drift rate equals to orbital angular rate,

9, or equals to initial value of n, no.
Therefore, to measure the deviation in
Stability Axes, the kinematics equation
needs to be reduced by the effect of Local
Horizon Axes (Stability Axes) initial
angular drift with respect to Inertial
Axes, no. Following Byson's techniques
in deriving the kinematics equation, the
Kinematics Equation of Dual Spin Satellite
in Stability Axis can be written as follows

s = p+n-yg
b, =q+dn
Wy G2 =P reennaresumarencinsioorees ony Eq. 23

where dn=(n-n,).

6.4 State Space Model of Prolate Dual-
Spin

Combining The Dynamics
Equation in Inclined Elliptical Orbit and
Kinematics Equation of Dual Spin
Satellite in Stability Axis yields State
Space Model for Dual-Spin Satellite in
Stability Axes as follows,
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where the [A] and [B] matrices are:

g6 R A Vet e 1Y
IS i WS
IA]= A!I A)? A!J 0 A.\S 0
GG - 0. & e
e} 4 0 K B
W e ] - 0 0
1
B, ©
B, 0
Bl= )"
-
0 0 |

By defining A; as follows,
Ay =Uyly+ 1y = 1;)
the [A] matrix elements in 1%t line are:
-1
e e LT TR
13 (I.x_‘_]’) (S Rn)
-1
Ay m———-
14 (Ee dod ) Fx
the [A] matrix elements in 2nd line are:

-1
& =_VL.(;S .QM)

A!
; 3
A, =duth (¥ K”c:_l@y_ﬂ
Aa‘ Rn'c /i \IS
Aﬂ=12+17'[N-KV+C\I‘(&)
> A! Rn‘( )‘I \‘(R /I
A;:.'—'M‘Gv % Ty G,
A.] ()\J

the [A] matrix elements in 3™ Jine are:

']
A!I=EYT'(IS‘QRn)

b G R 3\
An:ji.J_‘.N_m.}c;_ ]_Y+Ii
A, \ R, JrE ]

|
\
—I..2 K iy
A33=—‘{ﬁ_.{N K" +CJLLJ
I

AI Rdc
A;s=£z"G\' = _IV'G?
A, A;

the [B] matrix elements in 1st column
are:

g, =lath [N )
A, \Ry )

AR(A)
R, R

i
=
|
Lot
i

7 RESULTS OF OPEN LOOP SIMULA-
TION AND INTERPRETATIONS

The values of [A]’'s and [B]’s
elements are shown in Error! Reference
source not found.. The value of A4, Ass,
A3s and 6n will be time-varying for
elliptical or inclined orbit. However, the
elements of [A] are constant value only
for circular orbit at equatorial plane.
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7.1 Simulation in Longitudinal Mode
7.1.1 Effect of eccentricity in inclined
orbit (i = 30°)

® piot of 65 because of impulsive input
Geres (Figure 7-1)
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Figure 7-1:Plot of 6s; input 8erer ; i=30deg

@ Plot of 6s due to elliptic orbital drift
input 6n (Figure 7-2)
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Figure 7-2: Plot of Os and 0n; e=0 &
e=0.2; 2 orbital periode;
i=30deg

After impulsive disturbance were
applied, Gravity Gradient Moment induced
subsidence mode in circular orbit. While
the increment of eccentricity, drove that
subsidence mode into long periodic
oscillation mode, which had the same
period with orbital period. This long
periodic oscillation mode oscillates from
-20° to +90° as superposition of many
oscillation mode.

7.1.2 Effect of inclination in elliptic
orbit (e = 0.2)

* Plot of Os due to impulsive input <tgf
(Figure 7-3)

e, douliet +- 10wk 2xZeecord cpen loog
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Figure 7-3: Plot of Os i=O deg, 30 deg dan

60 deg; e=0.2
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Plot of Os due to elliptic orbital drift
input 6n (Figure 7-4)

A, lorbil=7225.6sec; *=0

=% N
: 1=30dag
E!----a"- ;

ceet — i=B0deg ok

4000 5000 6000

0 1000 2000 3X0 7000
waktu (second)

~; 2* orbil = 2*7225. 65ec zoom atan|s open loop; e =0
)

- i,

20 . -
1] 0.5 (1] 075 1 1.5 15 175
waktu (dalam saluan penoda orbit (1 XT=7225 67 sec.))

Figure 7-4: Plot of Os; i=0 deg, 30deg dan
60 deg; 1Orbit and 2 Orbits;
e=0.2
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Inclination increment effect in
longitudinal motion mode was negligible
for Dual-Spin Satellite. For inclination at
0°, 30°, and 60°, the graphic curves for
Os were almost aligned.

7.2 Simulation in Lateral Mode
7.2.1 Effect of eccentricity in inclined
orbit [i = 30°)

W Plot of g8 due to impulsive input 6e.f
(Figure 7-5)
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@ Plot of gs due to elliptic orbital drift
input én (Figure 7-6)
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Figure 7-6: Plot of s and 6n; e=0 &
e=0.2; 4 Orbits; i=30deg

After impulsive disturbance were
applied, Gravity Gradient Moment induced
roll-librations mode in for s, which
oscillates from -1x1082 to +1x102 deg. In
circular orbit, this roll-librations mode in
for ps was damped after +400 sec. While
in elliptic orbit, the eccentricity induced
long periodic oscillation mode, which
oscillates from -4x10-3 to +4x103 deg.
7.2.2 Effect of inclination in elliptic

orbit (e = 0.2)

@ Piot of @s due to impulsive input 6e..s
(Figure 7-7)
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Figure 7-7: Plot of @s; i=0Odeg, 30deg dan
60deg; e=0.2

® Plot of ¢s due to elliptic orbital drift
input én (Figure 7-8)
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Figure 7-8: Plot of @s and 6n; =0Odeg,
30deg and 60deg; 2 Orbits
e=0.2

Inclination increment effect in
longitudinal motion mode was negligible
for Dual-Spin Satellite. For inclination at
0°, 30°, and 60°, the graphic curves for
@s were almost aligned.

7.3 Simulation in Directional Mode
7.3.1 Effect of eccentricity in inclined
orbit (i = 30°)

® Plot of ws due to impulsive input
56.—1,{ (Fig‘ul‘e 7"9)
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Figure 7-9: Plot of ws; e=0 and e=0.2;
i=30deg
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Plot of ips due to elliptic orbital drift
input 6n (Figure 7-10)

&, bt = bT75Bssc =XP B
T B e e T U 1 e
L] : : ; ; : : I
{degfs) b s i...,.. s
! : L ] ] 1 e |
0 05 1 15 pi 25 3 35 i

¥ ma_lg,lxuhlxdx??}ﬁ?\sec o0 y-avis, spem boop, #30°

Bl & & ¥ 285 3 B/
waktu {dalam salusm penoda orbat (1XT=7226. 67 sec )

Figure 7-10: 'Plot of s and 6n; e=0 &
e=0.2; 4 Orbits =30deg

After impulsive disturbance were
applied, Gravity Gradient Moment induced
yaw-librations mode in for g In circular
orbit, this yaw -librations mode in for i/'s
was damped after £400 sec. In the
elliptic orbit, the eccentricity induces
long periodic oscillation mode, which
oscillates from -5.5x10-3 to +1.5x10-3

(deg).

7.3.2 Effect of inclination in elliptic
orbit (e - 0.2)

Plot of (/* due to impulsive input <5gf
(Figure 7-11)
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Figure 7-11: Plot of wps; i=Odeg, 30deg
and 60deg; e=0.2
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Plot of i"s due to elliptic orbital drift
input 6n (Figure 7-12)
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Figure 7-12: Plot of ws; #+=0deg, 30deg
and 60deg;1 Orbit and 2
Orbits; e=0.2

Inclination increment effect in
longitudinal motion mode was negligible
for Dual-Spin Satellite. For inclination at
0°, 30°, and 60°, the graphic curves for
ips were almost aligned.

8 CONCLUDING REMARKS

In Open-Loop simulation, the
librations and subsidence mode are
present in longitudinal, lateral and

directional motion. However, in lateral
and directional motion, the Gravity
Gradient moment induced a divergence
mode if the simulation were run for more
than 4 orbital periods (1 Orbital Periods
is 7225 sec).

The effect of Gravity Gradient
Moments is destabilizing the lateral and
directional motion for the dual-spin
satellite. In reverse, the effect of Gravity
Gradient Moments is stabilizing
longitudinal motion. The effect of
increasing the orbital eccentricity, e, is
the presence of the long period
oscillation mode in the longitudinal and
lateral directional motion.

The effect of increasing the
inclination of Orbital Plane, i, can be
neglected in the longitudinal motion. In
lateral directional motion, increasing the
inclination will reduce steady state error
of g5 and ips-
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