PEMODELAN DAN SIMULASI SISTEM KENDALI *PROPORTIONAL INTEGRAL DERIVATIVE* UNTUK KESTABILAN DINAMIKA TERBANG *UNMANNED AERIAL VEHICLE* (MODELING AND SIMULATION OF PID CONTROL FOR FLIGHT DYNAMIC STABILITY OF UAV)

Eko Budi Purwanto*), Sufendi Lie**), Syahron Hasbi Nasution***) *) Peneliti Pusat Teknologi Penerbangan, Lapan **) Laboratorium Sistem Kendali dan Komputer, STEI – ITB ***) Departemen Aerodinamik, PT Dirgantara Indonesia e-mail: ekobudi1310@gmail.com

ABSTRACT

For simplified, movement of UAV is in the longitudinal and lateral directional. State space of "LSU-02" show that the system is controlable and static stable. From simulation using Matlab get settling time 1.5 second for longitudinal direct move and 3 second for lateral directional move. Partial simulation of PID controller result $K_p = 15$, $K_i = 1$ and $K_d = 0$ for lingutidal and $K_p \le 3,1$; $K_i = 0,7$ and $K_d = 0$ for lateral directional. Change the control parameter for minimum settling time make maximum overshoot higher. These control parameter can using for hardware implementation.

Keywords: Settling time, Control parameter, Maximum overshoot

ABSTRAK

Secara sederhana, gerak Unmanned Aerial Vehicle (UAV) dibedakan atas gerak longitudinal dan lateral direksional. Dari matrik keadaan diketahui bahwa karakteristik "LSU-02" dapat dikontrol (controlable) dan stabil statis. Hasil simulasi memperlihatkan bahwa waktu pencapaian (settling time) kondisi tunak adalah 1,5 detik untuk gerak longitudinal, dan 3 detik untuk gerak lateral direksional. Dari simulasi parsial diperoleh nilai parameter kontrol Proportional Integral Derivative (PID) untuk gerak longitudinal $K_p = 15$, $K_i = 1$ dan $K_d = 0$, sedangkan untuk gerak lateral direksional $K_p \leq 3,1$; $K_i = 0,7$ dan $K_d = 0$. Perubahan nilai parameter untuk memperkecil waktu pencapaian, akan membuat lewatan maksimum (overshoot) semakin tinggi. Oleh karena itu nilai tersebut bisa dijadikan acuan dalam implementasi hardware.

Kata kunci: Waktu pencapaian, Parameter kontrol, Lewatan maksimum

1 PENDAHULUAN

Pesawat tanpa awak "LSU-02 (*Lapan Surveillance UAV-02*)" untuk misi pemotretan dan pengamatan dari udara (*surveillance*) harus terbang dengan kecepatan relatif rendah dan stabil. Gangguan acak pada sistem (*plant*) berupa kecepatan dan arah angin, pergerakan awan dan kesalahan pengukuran sensor membuat ketidakpastian model dinamika terbang dan sulit diprediksi. Adanya *multi input* berupa *defleksi servo* $\delta_e = 48$

elevator, δ_r = ruder, δ_a = aileron, δ_m = servo throttle dan multi output p(t) = roll, q(t) = pitch, r(t) = yaw, membuat permasalahan semakin komplek (Purwanto, dkk. 2011). Untuk itu diperlukan sistem kendali robust yang dapat mengeliminasikan ketidakpastian, gangguan dan noise pengukuran.

Untuk perancangan sistem kendali diperlukan informasi kestabilan statis dan dinamis dari sistem, sehingga harus dilakukan analisis persamaan keadaan (state space), letak pole-zero dan nilai eigen matrik keadaan. Aplikasi sistem kendali pada UAV diharapkan mampu memberikan kecerdasan sistem navigasi dan kendali sehingga pesawat dapat terbang secara autonomous mengikuti lintasan. Jika terjadi gangguan terbang pada UAV, sistem kendali akan mengembalikan ke posisi wing level.

Dalam tulisan ini digunakan pesawat sayap tetap (fix wing) dengan kendali permukaan aileron, elevator, *rudder* dan *throttle* mesin. Sebagai pengembangan awal akan diterapkan sistem kendali Proportional Integral Derivative (PID). Sistem kendali PID dirancang untuk Single Input-Single Output (SISO) maka nilai terbaik setiap parameter harus dicari satu per satu. Cara mendapatkan efek umpan balik kendali PID terhadap gerak sistem dengan mengubah-ubah nilai gain, frekuensi cut-off, saturasi gaya, menahan sinyal terhadap trayektori acuan dan platfom kondisi awal (Kada and Ghazzawi, 2011).

Tiga komponen pada pengontrol PID saling melengkapi namun tidak dapat akurat terhadap trayektori yang diberikan terutama untuk gerak ekstrem. Untuk mengatasinya bisa kompensator digunakan sehingga kontroler lebih responsif.

Tujuan dari pembahasan ini adalah: (i) mengetahui karakteristik stabilitas statis dan stabilitas dinamis dari sistem, (ii) merancang sistem kontrol untuk UAV, (iii) mendapatkan parameter kontrol PID.

LANDASAN TEORI 2

Enam derajat kebebasan (6 DoF) gerak pesawat terbang terdiri dari 3 arah gerak translasi (vertikal, horisontal dan transversal) dan 3 arah gerak rotasi (pitch, yaw, roll). Untuk menghindari kompleksitas pemodelan matematiknya, maka diasumsikan bahwa gerakan pesawat mempunyai deviasi cukup kecil terhadap kesetimbangan, dan gerak pesawat dibedakan dalam dua kelompok yaitu gerak longitudinal dan gerak lateral (Ribiero, dan Pliviera, 2010). Persamaan gerak longitudinal terdiri atas gaya-gaya pada sumbu-x, sumbu-z persamaan momen pitching. dan Sedangkan persamaan gerak lateral terdiri atas gaya terhadap sumbu-y, momen yawing dan momen rolling. Uraian persamaan gerak pada kedua matra ditampilkan di bawah ini (McLean, 1990).

Untuk UAV yang bergerak lurus, dengan wing level dapat simetri diekspresikan dengan persamaan:

$$\dot{u} = X_{u}u + X_{w}w + W_{0}q - g\cos\Theta_{0}\theta$$

$$\dot{w} = Z_{u}u + Z_{w}w + U_{0}q - g\sin\Theta_{0}\theta + Z_{\delta_{E}}\delta_{E}$$

$$\dot{q} = M_{u}u + M_{w}w + M_{\dot{w}}\dot{w} + M_{q}q + M_{\delta_{E}}\delta_{E}$$

$$\dot{\theta} = q$$
(2-1)

Dengan u = kecepatan linier ke sumbu x, w = kecepatan linier ke sumbu z, q =kecepatan anguler terhadap sumbu v, θ = variabel pitch, $\delta_{\rm E}$ = defleksi elevator. U, w, q, θ , dan $\delta_{\rm E}$ merupakan variabel gerak dan kendali UAV.

Persamaan lateral mengandung gaya ke arah sumbu-y, momen yawing dan momen rolling, dapat ditulis sebagai berikut:

$$\dot{v} = Y_{v}v + U_{0}r - W_{0}p - g\cos\Theta_{0}\phi + Y_{\delta_{R}}\delta_{R}$$

$$\dot{p} = \frac{I_{xz}}{I_{xx}}\dot{r} + L_{v}v + L_{r}r + L_{p}p + L_{\delta_{A}}\delta_{A} + L_{\delta_{R}}\delta_{R}$$

$$\dot{r} = \frac{I_{xz}}{I_{zz}}\dot{p} + N_{v}v + N_{r}r + N_{p}p + N_{\delta_{A}}\delta_{A} + N_{\delta_{R}}\delta_{R} \qquad (2-2)$$

$$\dot{p} = \dot{\phi} - \dot{\Psi}\sin\Theta_{0}$$

$$\dot{r} = \dot{\Psi}\cos\Theta_{0}$$

Dengan v = kecepatan linier ke sumbu y, p = kecepatan anguler terhadap sumbu x, r = kecepatan anguler terhadap sumbu z, ϕ = variabel roll, δ_A = defleksi aileron, δ_R = defleksi rudder.

Gerakan pesawat ke arah sumbu akan mendapat gangguan lateral terhadap keadaan setimbang berupa kombinasi dari rolling, yawing dan gerak sliding. Jadi interaksi antara roll dan yaw menghasilkan gerakan kopel yakni pesawat berbelok sambil memiringkan badannya. Arah gaya dan arah momen pada badan pesawat diberikan pada Gambar 2-1.

Karakteristik kestabilan dinamik dapat dilihat dari akar-akar karakteristik dan hasil analisis persamaan keadaan. Untuk matra longitudinal persamaan keadaan ditulis seperti berikut:

$$\begin{bmatrix} \dot{u} \\ \dot{\alpha} \\ \dot{\theta} \\ \dot{q} \end{bmatrix} = \begin{bmatrix} x_u & x_\alpha & x_\theta & 0 \\ z_u & z_\alpha & z_\theta & z_q \\ 0 & 0 & 0 & V/c \\ m_u & m_\alpha & m_\theta & m_q \end{bmatrix} \begin{bmatrix} u \\ \alpha \\ \theta \\ q \end{bmatrix} + \begin{bmatrix} x_{\delta e} \\ z_{\delta e} \\ 0 \\ m_{\delta e} \end{bmatrix} [\delta_e] \quad (2-3)$$

Keluaran gerak longitudinal berbentuk:

$$y = Cx = \begin{bmatrix} 0 & -\frac{1}{U_0} & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ w \\ q \\ \theta \end{bmatrix}$$
(2-4)

F

Untuk matra lateral direksional persamaan keadaan ditulis seperti di bawah ini.

$$\begin{bmatrix} \dot{\beta} \\ \dot{p} \\ \dot{r} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} y_{\beta} & y_{\phi} & y_{p} & y_{r} \\ I & 0 & I_{p} & I_{r} \\ n_{\beta} & 0 & n_{p} & n_{r} \\ 0 & 0 & 2V/h & 0 \end{bmatrix} \begin{bmatrix} \beta \\ p \\ r \end{bmatrix} + \begin{bmatrix} 0 & y_{\delta r} \\ I_{\delta a} & I_{\delta r} \\ n_{\delta a} & n_{\delta r} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_{a} \\ \delta_{r} \end{bmatrix}$$
(2-5)

Keluaran gerak lateral direksional adalah:

$$y = [(Y_{\nu} + l_{\nu}N_{\nu}' - l_{z}L_{\nu}')(l_{x}N_{p}' - l_{z}L_{p}')(l_{x}N_{r}' - l_{z}L_{r}') \quad 0]x + [(l_{x}N_{\delta_{A}}' - l_{z}L_{\delta_{A}}')(Y_{\delta_{B}}^{*} + l_{x}N_{\delta_{B}}' - l_{z}L_{\delta_{B}}')]u$$

$$(2-6)$$

Dengan mengidentifikasi kondisi dan lingkungan terbang yang penuh ketidakpastian, maka secara ideal diperlukan sistem kendali yang *robust* dalam segala keadaan.

Gambar 2-1: Sumbu acuan badan pesawat, gaya dan momen pada LSU-02

Gambar 2-2: Diagram blok sistem kontrol PID

Konstanta pada sistem kendali PID adalah K_p untuk komponen proporsional, K_i untuk komponen integral dan K_d untuk komponen derivatif. Karakteristik sistem kendali PID adalah jika nilai K_d lebih besar dari pada K_p dan K_i, atau nilai K_p lebih besar dari K_i, maka kontroler akan lebih sensitif terhadap perubahan sinyal respon. Komponen derivatif mempercepat terjadinva sedangkan perubahan, Ki akan mengeliminir sinyal kesalahan kondisi tunak. Jika nilai gain umpan balik (K) respon sistem lambat, kecil maka sebaliknya jika K besar kontroler PID menjadi responsif dan memberikan efek kurang stabil. Dengan kata lain bahwa sistem kendali yang stabil berdampak kurang responsif terhadap umpan balik. Melalui simulasi dicari nilai parameter kendali untuk LSU-02, sehingga terbang wahana cukup responsif namun tetap stabil.

Pemodelan dan identifikasi parameter dapat digunakan untuk pengembangan sistem kendali non-linier untuk UAV. Agar hasilnya lebih presisi digunakan algoritma pendekatan kesalahan keluaran (the output-error approach algorithm), khususnya untuk identifikasi parameter dari sebuah plant yang sulit diukur (Manai, et al, 2005). Data hasil uji terbang digunakan untuk menghitung nilai parameter model dengan pendekatan algoritma pendekatan kesalahan keluaran tersebut. Untuk tujuan sintesis dan analisis sistem kendali, ketidakpastian model non-linier dapat dilinierisasi.

Simulasi non-linier dengan memperhatikan tabel interpolasi nilai stabilitas derivatif sebagai fungsi dari sudut sentuh (attack) dan sudut geser (sideslip). Derivatif menyesuaikan nilai koefisien (lift, drag, x-moment, dll) untuk dikombinasikan dengan parameter pesawat dan lingkungan (tekanan dinamik, acuan panjang dan luas area dijumlahkan dengan koefisien d11) khusus (misal C_L). Simulasi model UAV membutuhkan data lingkungan meliputi keadaan atmosfir, kondisi jenuh dari aktuator, parameter dinamik pesawat, gangguan keluaran (noisy outputs) dan konversi unit untuk menyesuaikan hasil pengukuran sensor (Muller, 2007).

3 SIMULASI SISTEM KONTROL PID

3.1 Karakteristik Aerodinamik

Model dinamika terbang diperoleh dengan pendekatan *first principle* untuk perancangan sistem kendali terbang otomatis. Spesifikasi "LSU-02" pada tabel berikut:

Simbol	Nama	Besaran/satuan	Keterangan
М	Total berat pesawat	9,49 kg	Total massa pesawat termasuk
	(MTOW)		muatan kendali dan bahan
			bakar penuh
\mathbf{m}_1	Berat muatan	3,0 kg	Berat total muatan yang dibawa
			pesawat
V	Kecepatan terbang	26 m/det	Kecepatan translasi pesawat
ρ	Rapat massa udara	1,2250 kg/m ³	Kerapatan udara rata
α	Sudut <i>attack</i> /serang	2 derajat	Sudut serang
β	Sudut <i>drift</i> /geser	Derajat	Sudut
Ē	Panjang <i>cord</i> aerodinamik	32,5 cm	Lebar sayap (<i>cord</i>)
	rata-rata		
S	Luas permukaan sayap	7166,25 cm ²	Luas total permukaan sayap
L	Overall lengt	160 cm	Panjang total pesawat
b	Wing span	220,5 cm	Panjang bentangan sayap
g	Percepatan gravitasi	9,8 m/det ²	
Т	Thrust mesin	3,7 HP/8500 rpm	Daya dorong mesin
t	Endurance	± 90 menit	Lama terbang
h	Tinggi terbang	120 m	Rata-rata tinggi terbang
i	Diameter propeler	20 m	

Tabel 3-1: SPESIFIKASI LSU-02

Berdasarkan data pesawat di atas, maka diprediksi nilai koefisien dan karakateristik aerodinamik seperti pada Tabel 3-2 dan Tabel 3-3.

Dari Tabel 3-2 dan Tabel 3-3 terlihat bahwa nilai C_{mq} , C_{nr} , dan C_{lp} berharga negatif, hal ini menunjukkan bahwa UAV bersifat stabil secara statik.

3.2 Persamaan Keadaan

Dari penurunan yang sudah dilakukan, (Purwanto, dkk, 2011) diperoleh persamaan keadaan dan persamaan keluaran LSU-02 matra longitudinal, seperti ditampilkan pada persamaan (3-1) dan (3-2).

Gambar 3-1: Skema UAV tampak samping (a) dan tampak atas (b)

Table 3-2: KARAKTERISTIK AERODINAMIK DAN TURUNAN KESTABILAN GERAK LONGITUDINAL

Parameter	Nilai	Satuan	Keterangan
C _{xu} C _{zu} C _{mu} C _{mq} C _{mde}	-0,12248 -0,62 0 -7,976 -0,733	[-] [-] [per rad] [per rad/s] [per rad/s]	Koefisien gaya ke sumbu x Koefisien gaya ke sumbu z Koefisien momen pitching pesawat Koefisien momen pitching pesawat dengan pitch rata-rata Koefisien momen pitching pesawat dengan defleksi sudut elevator

Table 3-3: KARAKTERISTIK AERODINAMIK DAN TURUNAN KESTABILAN GERAK LATERAL

Parameter	Nilai	Satuan	Keterangan
C_{yp}	0,02888	[per rad]	Koefisien gaya samping pesawat terhadap perubahan <i>roll</i> rata-rata
C_{np}	-0,02589	[per rad]	Koefisien momen <i>yawing</i> pesawat terhadap perubahan <i>roll</i> rata-rata
C_{lp}	-0,4722	[per rad/s]	Koefisien momen <i>rolling</i> pesawat terhadap perubahan <i>roll</i> rata-rata
C_{np}	-0,02589	[per rad/s]	Koefisien momen <i>yawing</i> pesawat terhadap perubahan <i>roll</i> rata-rata
C_{nr}	-0,1487	[per rad/s]	Koefisien momen <i>yawing</i> pesawat terhadap perubahan <i>yaw</i> rata-rata
C_{lr}	0,09015	[per rad/s]	Koefisien momen <i>rolling</i> pesawat terhadap perubahan <i>yaw</i> rata-rata

$$\begin{bmatrix} \dot{u} \\ \dot{\alpha} \\ \dot{\theta} \\ \dot{q} \end{bmatrix} = \begin{bmatrix} -0.1489 & 0.1233 & -0.3770 & 0 \\ -0.7525 & -6.1342 & -0.0132 & 0.9944 \\ 0 & 0 & 0 & 1 \\ 1.5203 & -24.34 & 0.02656 & -6.0637 \end{bmatrix} \begin{bmatrix} u \\ \alpha \\ \theta \\ q \end{bmatrix} + \begin{bmatrix} 0 \\ -0.3471 \\ 0 \\ 58.92 \end{bmatrix} [\delta_e]$$
(3-1)

Persamaan keluaran adalah:

Gambar 3-2: Diagram blok pengendalian gerak longitudinal UAV dengan PID

Dari matrik keadaan di atas terlihat bahwa semua baris dalam matrik adalah bebas linier sehingga sistem dapat dikontrol. Dengan u = kecepatan kedepan; α = sudut serang; θ = sudut *pitch*; q = kec. sudut *pitch*, dibangun diagram blok simulasi seperti Gambar 3-2.

Dengan titik awal =1, acuan =1;

Kp = 15; Ki = 0,5 dan Kd = 0.05. Hasil simulasi untuk keluaran sudut serang (alpha) dan sudut teta dengan model $y = C x = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} x$ ditampilkan pada Gambar 3-3 dan 3-4.

Keluaran pengaruh kombinasi antara alpha dan beta dengan model keluaran $y = C x = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix} x$ diberikan pada Gambar 3-5.

Gambar 3-3: (a) Keluaran sudut alpha untuk gerak longitudinal, (b) Keluaran sudut pitch (θ) untuk gerak longitudinal, (c) keluaran akibat kombinasi sudut alpha dan teta untuk gerak longitudinal

Dari grafik keluaran di atas, terlihat bahwa akibat terjadinya kombinasi antara sudut alpha dan teta, maka kondisi tunak (*steady state*) lebih lama dicapai. Hal ini membuktikan bahwa keberadaan gangguan akan menguatkan *error* sinyal respon.

Untuk gerak lateral direksional, dari penurunan sebelumnya (Purwanto, dkk, 2011) persamaan keadaan adalah:

$$\begin{bmatrix} \dot{\beta} \\ \dot{p} \\ \dot{r} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} -0,7313 & 0,0015 & -1 & 0,3771 \\ -41,715 & -12,611 & 2,4077 & 0 \\ 31,832 & -0,2022 & -1,1616 & 0 \\ 0 & 1 & 0,0349 & 0 \end{bmatrix} \begin{bmatrix} \beta \\ p \\ r \\ \phi \end{bmatrix} + \begin{bmatrix} 0 & 0,0696 \\ 98,571 & 7,1173 \\ -0,7000 & -1,3632 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_a \\ \delta_r \end{bmatrix}$$
(3-3)

Persamaan keluaran gerak lateral adalah:

$$y = C \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} x$$
(3-4)

Diagram blok untuk gerak lateral diberikan dibawah ini.

Gambar 3-5: Diagram blok pengendalian gerak lateral direksional UAV dengan PID

Gambar 3-6: (a) Respon lateral Kp 3.1; Ki 0,7, (b) Respon lateral Kp 3,2; Ki 0,7, (c) Respon lateral Kp 4,0; Ki 0,7

Dari grafik keluaran di atas terlihat bahwa perubahan nilai Ki berpengaruh pada kesalahan kondisi tunak terhadap acuan yang diberikan. Sedangkan pengaruh nilai Kp berpengaruh pada waktu pencapaian kondisi tunak. Jika nilai Kp < 3,1 sinyal keluaran mencapai titik stabil tanpa terjadi osilasi, sedangkan untuk nilai Kp > 3,1 kondisi stabil dicapai dengan terjadi osilasi (gerak geleng berlebih).

4 PEMBAHASAN

4.1 Analisis Kestabilan

Berdasarkan analisa letak pole dan nilai eigen bahwa sistem stabil statis dan melalui perancangan sistem kendali diharapkan bisa memperbaiki kinerja sistem (Purwanto, dkk., 2011). Oleh karena itu dilakukan simulasi untuk mendapatkan nilai-nilai parameter kontrol PID yang sesuai harapan. respon Berdasarkan hasil simulasi dapat dikatakan bahwa sistem bisa mencapai kondisi stabil. Permasalahannya adalah berapa nilai Kp, Ki, Kd, gain (K) agar kondisi tunak cepat dicapai dengan lewatan (overshoot) kecil.

Dalam hukum kontrol PID, Ki merupakan *gain* untuk respon keadaan tunak, artinya bahwa integrator dapat menghilangkan *off set* antara sinyal keluaran dengan acuan. Sedangkan perilaku sinyal transien dipengaruhi oleh pangkat tertinggi dari (Kd) dan diikuti oleh (Kp). Perilaku sistem sebagai akibat dari variasi *gain* adalah sebagai berikut:

- Jika Ki dihilangkan maka semua respon adalah transien dengan keadaan tunak nol. Satu zero menggagalkan pole dan zero yang lain adalah –Kp/Kd.

- Jika Kd dihilangkan, hanya ada satu zero pada s = -Ki/Kp.
- Jika 4Kd*Ki > Kp², zero menjadi komplek dan bergerak meninggalkan sumbu *real* bidang-s.
- Jika *gain* lebih besar dari pada pangkat s, respon transien adalah lebih kuat (osilasi lebih tinggi).
- Jika *gain* lebih kecil dari pada pangkat s, respon transien adalah ditekan kekiri sehingga respon kondisi tunak dicapai lebih cepat.

keluaran Dari grafik gerak longitudinal diperoleh bahwa jika terjadi gangguan maka pesawat akan kembali ke kondisi sebelumnya (*wing level*) dalam waktu 1,5 detik. Dengan catatan bahwa gangguan yang muncul menyebabkan simpangan sudut serang maksimum 2 derajat. Hasil simulasi merupakan waktu optimum, jika dipercepat akan terjadi lewatan dan menyebabkan osilasi berlebih. Jika gangguan pada gerak lateral direksional, kondisi tunak dicapai dalam waktu 3 detik dan percepatan waktu pencapaian bisa menyebabkan lewatan dan osilasi berlebih.

4.2 Analisis Parameter dinamika Terbang

Nilai eigen berupa bilangan komplek dengan bagian riil berharga negatif (berada di sebelah kiri sumbu imajiner), artinya bahwa dalam gerak longitudinal sistem mempunyai kestabilan dinamik. Dengan sistem kendali terbang yang baik dan tingkat kestabilan yang mumpuni diharapkan UAV dapat menjalankan misinya.

Eigen	Nilai	Keterangan
λ_1	-6.1121 + 4.9252i	Nilai eigen berupa bilangan komplek sehingga masing-
λ_2	-6.1121 - 4.9252i	masing berpasangan
λ_3	-0.0613 + 0.4052i	
λ_4	-0.0613 - 0.4052i	

Tabel 4-1: NILAI EIGEN LINGKAR TERBUKA UNTUK GERAK LONGITUDINAL

Dari nilai eigen terutama λ_4 dapat dikatakan bahwa sistem sangat sensitif terhadap gangguan dari arah lateral. Oleh karena itu jika terjadi gangguan, maka pencapaian kondisi tunak lebih lama dibanding dengan waktu pada gerak longitudinal.

Plot letak *pole* pada bidang-s untuk gerak lateral direksional diberikan pada Gambar 4-1. Mengacu pada letak pole pada bidang-s Gambar 4-1, pesawat secara keseluruhan tidak mempunyai kestabilan kuat. Hal ini terlihat dari satu pole berada di nol dan cenderung bergeser ke kanan sumbu imajiner, maka harus diperhatikan asal pole tersebut. Dengan mengambil states = 'beta yaw roll phi'; inputs ='rudder aileron'; outputs = 'yawrate bank-angle'; maka respon terhadap masukan impulse seperti Gambar 4-2.

Eigenvalue	Damping	Freq. (rad/s)
-1.27e+001	1.00e+000	1.27e+001
-9.11e-001 + 5.80e+000i	1.55e-001	5.87e+000
-9.11e-001 - 5.80e+000i	1.55e-001	5.87e+000
3.66e-002	-1.00e+000	3.66e-002

Table 4-2: NILAI EIGEN LINGKAR TERBUKA UNTUK GERAK LATERAL DIREKSIONAL

Gambar 4-1: Letak pole lingkar terbuka pada bidang-s

Gambar 4-2: Respon lingkar terbuka (yaw rate dan sudut belok) terhadap masukan rudder dan aileron

57

5 KESIMPULAN

Apabila terjadi gangguan pada gerak longitudinal dengan simpangan maksimum 2 derajat, maka kondisi stabil dinamik bisa dicapai dalam waktu kurang dari 1,5 detik, artinya bahwa pesawat akan kembali ke kondisi wing level dan terbang lurus. Sedangkan untuk gerak lateral direksional, kondisi stabil dinamik dapat dicapai setalah 3 detik, artinya dalam waktu tersebut pesawat akan kembali ke arah terbang yang ditentukan. Gain umpan balik K = 1, dan konstanta proposional Kp = 15, Ki = 0,5 dan Kd = 0 dapat digunakansebagai acuan dalam implementasi hardware. Agar pesawat bisa terbang dengan kendali otomatis dalam segala kondisi cuaca dan keadaan sebenarnya (non-linier) maka perlu dirancang sistem kendali multivariabel robust. Untuk tujuan yang lebih baik diperlukan penelitian lanjut dengan melibatkan banyak disiplin ilmu pengetahuan.

Terimakasih: Prof. Dr. Bambang Riyanto atas saran dan masukannya

DAFTAR RUJUKAN

- Kada, B, and Y. Ghazzawi, 2011. *"Robust PID Controller Design for* an UAV Flight Control System", Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II, WCECS 2011, October 19-21, 2011, San Francisco, USA; download 16 Nop 2011.
- Manai, M., Andre Desbiens, Eric Gagnon, 2005. "Identification of a UAV and Design of a Hardware-in-

the-Loop System for Nonlinear Control Purposes", LOOP, Universit'e Laval, Quebec City, Quebec, G1K 7P4, Canada; American Institute of Aeronautics and Astronautics; download 20-04-2011;.

- McLean, D., 1990. "Automatic Flight Control System, Prentice Hall International Series in System ang Control Engineering (editor M. J. Grimble), UK 1990.
- Muller, E. R., 2007. Hardware-in-theloop Simulation Design for Evaluation of Unmanned Serial Vehicle Control Systems, NASA Ames Research Center, Moffett Field, CA, 94035; AIAA Modeling Simulation Technologies and Conference and Exhibit, 20-23 August 2007, Hilton Head, South Carolina; download 28-07-2011.
- Purwanto, E. B., R. Andiarti, T. Pandoyo,
 A. Sugeng, Wahyudi, A. Wirawan,
 Y. Prabowo, H. D. Budiman, R.
 Firdaus, P. Sutarya, 2011.
 Rancang Bangun Sistem Kendali
 Multivariabel Robust Untuk
 Pesawat Tanpa Awak (PUNA),
 Laporan PKPP; PUSTEKBANG LAPAN 2011.
- Ribiero, L. R., Neusa Maria F. Pliviera, 2012. UAV Autopilot Controller Test Platform Using Matlab/Simulink and X-Plane, Instituto Tecnologico de Aeronautica; 40th ASEE/IEEE Frontiers in Education Conference, October 27-30, 2010, Washington, DC; download 31-05-2011.