Nanik Suryo Haryani, Sayidah Sulma, Junita Monika Pasaribu


The solid form of oil heavy metal waste is  known as acid sludge. The aim of this research is to exercise the correlation between acid sludge concentration in soil and NDVI value, and further studying the Normalized Difference Vegetation Index (NDVI) anomaly by multi-temporal Landsat satellite images. The implemented method is NDVI.  In this research, NDVI is analyzed using the  remote sensing data  on dry season and wet season.  Between 1997 to 2012, NDVI value in dry season  is around – 0.007 (July 2001) to 0.386 (May 1997), meanwhile in wet season  NDVI value is around – 0.005 (November 2006) to 0.381 (December 1995).  The high NDVI value shows the leaf health or  thickness, where the low NDVI indicates the vegetation stress and rareness which can be concluded as the evidence of contamination. The rehabilitation has been executed in the acid sludge contaminated location, where the high value of NDVI indicates the successfull land rehabilitation effort.


Acid sludge; Contamination; Normalized Difference Vegetation Index (NDVI)

Full Text:



Baret F., Guyot G., (1991), Potentials and limits of vegetation indexes for LAI and APAR assessment. Remote Sensing Environ 35: 161–173.

Carlson TN, Ripley DA, (1997), On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing Environ 62 (3): 241‐252.

Chuvieco E., Martin MP, Palacios A., (2002), Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. International Journal of Remote Sensing 23:5103–5110.

Collins W., Chang SH, Raines GL, Canney F., Ashley R., (1983), Airborne biogeophysical mapping of hidden mineral deposits. Econ. Geol. 78: 737-749.

D’Emilio M., Macchianto M., Ragosta M., Simoniello T., (2012), A Method for the Integration of Satellite Vegetation Activities Observations and Magnetic Susceptibility Measurements for Monitoring Heavy Metals in Soil. Journal of Hazardous Materials 241(2012): 118-126.

Guyot G., Baret F., Jacquemoud S., (1992), Imaging spectroscopy for vegetation studies. In Imaging Spectrocopy: Fundamentals and Prospective Applications. Kluwer Academic Publishers: Norwell, MA, USA 2:145-165.

Haryani NS, Hidayat, Sulma S., Pasaribu JM, (2013), Deteksi Limbah Acid Sludge Menggunakan Metode Red Edge Berbasis Data Penginderaan Jauh. Proceeding Seminar Nasional Penginderaan Jauh. Sinas inderaja. Bogor.

Horler DNH, Barber J., Barringer AR, (1980), Effects of heavy metals on the absorbance and reflectance spectra of plants. International Journal of Remote Sensing 1: 121-136.

Kooistra L., Salas EAL, Clever JGPW, Wehren R., Leuven RSEW, Nienhuis PH, Buydens LMC, (2004), Exploring field vegetation reflectance as an indicator of soil contamination in river floodplain. Environ. Pollution. 127: 281-290.

Pereira JM, (1999), A comparative evaluation of NOAA AVHRR vegetation indices for Burned Surface Detection and Mapping. IEEE Transactions on Geoscience and Remote Sensing 37: 217–226.

Pertamina, (2012), Laporan Progres Pemulihan Lahan Terkontaminasi Acid Sludge. Pertamina Refenery Unit-V. Balikpapan- Kalimantan Timur. (in Indonesia).

Ray TW, Murray BC, Chehbouni A., Njoku E., (1993), The red edge in arid region vegetation: 340-1060 nm spectra. In Summaries of the Fourth Annual JPL Airborne Geoscience Workshop, JPL Publication 93-26; Jet Propulsion Laboratory: Pasadena, CA, USA pp 149-152.

Slonecker T., Fisher GB, Aiello DP, Haack B., (2010), Visible and Infrared Remote Imaging of Hazardous Waste : A Review. Remote Sensing 2:2474-2508; doi: 10.3390/ rs2112474.

Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni R.B, (2001), Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal Biometeorol 45: 184–190.

Viedma O., Melia J., Segarra D., Garcia-Haro J., (1997), Modeling rates of ecosystem recovery after fires using Landsat TM data. Remote Sensing of Environment 61:383–398.


  • There are currently no refbacks.