JUSTIFIKASI CFD KEDALAMAN GROOVE BAN PADA PROSES PERAWATAN HARIAN PESAWAT B737-800 AKIBAT HYDROPLANING (B737-800 TIRE GROOVE DEPTH CFD JUSTIFICATION ON ITS DAILY MAINTENANCE PROCESS DUE TO HYDROPLANING)

Vicky Wuwung, Nelli Anggreyni, Valeri Maria Hitoyo, Carolus Bintoro

Abstract

As a reference in daily maintenace process of Boeing 737-800 air plane, The tire groove depth influence justification which is moving on the contaminated runway that could be potential to hydroplaning phenomenon must be reviewed. Tire groove is a pattern on the tire surface that has a function to flow the water in front of the tire to the aft of the tire smoothly through the bottom of the tire. This mechanism let the tire less of a lift force that can be meant as a hydroplaning prevention. To understand hydroplaning phenomenon and groove depth tire influence, a numerical simulation is performed by using a CFD software Numeca Fine/Marine. This simulation is 3D, unsteady fluid dynamic simulation, with an assumption a rigid body tire at a short time after the airplane touch down to the runway (after skidding process) with velocity V = 62.27 m/s. The contaminated runway is modelled as a pool water (flood) on the flat surface runway with its height of 2.54 mm. Numerical simulation on this B 737-800 tire result shows that a hydroplaning phenomenon will happen for tire with groove depth less than 0.4â€. This concludes that a lesser groove depth of tire will reduce a tire groove cross sectional area, and will increase a compression force in the bottom at the front of the tire, that will result in increasing a lift force to the tire and finally increasing a chance to hydroplaning process. From this result, furthermore, the influence of this groove depth of B 737-800 tire variation that is run on a contaminated runway can be used as a reference on B 737-800 tire daily maintenance.

 

Abstrak

Groove atau ‘kembang†pada ban pesawat merupakan sarana untuk mengalirkan air dari bagian depan menuju bagian belakang melalui bagian bawah ban, tanpa mengangkat ban sehingga dapat mencegah terjadinya hydroplaning. Sehingga, pengaruh nilai kedalaman groove terhadap gaya angkat pada ban pesawat B737-800 yang bergerak di landasan dengan genangan air perlu dijustifikasi dalam proses perawatan harian. Penelitian ini menyimulasikan proses mengalirnya air pada bagian bawah ban dengan menggunakan simulasi numerik (CFD Numeca Fine/Marine) 3-D unsteady sebagai metode untuk menjustifikasi pengaruh groove. Simulasi dilakukan untuk kondisi gerakan ban pesawat pada saat proses landing (V = 62,275 m/s) beberapa saat setelah touch down (setelah skidding) dengan ban pesawat dianggap rigid body sebagai kondisi batas. Selanjutnya tinggi genangan air dipilih pada saat runway dinyatakan dalam kondisi flood (tinggi genangan air = 2,54mm). Simulasi tersebut menampilkan hasil perhitungan ban pesawat Boeing 737-800, dengan hydroplaning mulai terjadi ketika kedalaman groove ban berada dibawah 0,4 inch. Hal ini menunjukkan bahwa semakin kecil kedalaman groove, maka semakin kecil luas penampang groove dan semakin besar gaya kompresi yang terjadi pada bagian bawah ban dan semakin memperbesar kemungkinan terjadinya fenomena hydroplaning. Dengan diketahuinya hasil dari simulasi tersebut, maka hasil penelitian ini dapat digunakan sebagai masukan bagi proses maintenance harian pesawat B737-800 dan mampu memberikan suatu hal baru dalam pembelajaran khususnya mengenai fenomena hydroplaning.

Keywords

B 737-800; kedalaman groove; hydroplaning; CFD Numeca Fine/Marine; maintenance harian; tyre groove depth; flood runway; landing; daily maintenance

Full Text:

PDF

References

Boeing, 2016. Statistical Summary of Commercial Jet Airplane Accidents Worldwide Operations 1959–2015, July.

Federal Aviation Regulation (FAR), CFR 14 TSO c62 a-e.

Federal Aviation Regulation (FAR), Part 91, sec 91.409-Inspection.

Federal Aviation Regulation CFR 14, AC-25-13, 1988. FAA.

Gallaway, B. M., D. L., Ivey, G. G., Hayes, W. G., Ledbetter, R. M., Olson, D. L., Woods and R. E., Schiller, 1979. Pavement and Geometric Design Criteria for Minimizing Hydroplaning. Federal Highway Administration Report No. FHWA-RD-79-31, Texas Transportation Institute, Texas A&M University, USA. Texas A&M University, USA.

Gengenbach, W., 1968. Experimental Investigation of Tires on a wet Roadway ATZ, Vol. 70, No.9.

Ghim Ping Ong, T. F., Fwa, 2008. Hydroplaning Risk Management for Grooved Pavements. Singapore: 7th International Conference on Managing Pavement Assets.

Gilbert, A. Wray and Robert Ehrlich, I., 1973. A Systematic Experimental Analysis of Significant parameters Affecting Model Tire Hydroplaning. Davidson Laboratory, Stevens Institute of Technology, Submitted to NASA, Report No.- SIT-DL-72-1602, Contract No.NAS 1-9349.

Good Year, Aircraft Tire Data Book, The Good Year Tire Co, Akron, Ohio, 2010.

Grogger, H. and Weiss, M., 1996. Calculation of the Three-Dimensional Free Surface Flow around an Automobile Tire, Tire Science and Technology Vol.24, No.1, 39.

Grogger, H. and Weiss, M., 1997. Calculation of Hydroplaning of a Deformable Smooth Shaped and Longitudinally-Grooved Tire, Tire Science and Technology Vol.25, No.4, 265.

Horne, W.B and R.C Dreher, 1963. Phenomena of Pneumatic Tire Hydroplaning, NASA TN D-2056.

Kumar Anupam, 2012. Numerical Simulation of Vehicle Hydroplaning and Skid Resistance on Grooved Pavement. Singapore: NATIONAL UNIVERSITY OF SINGAPORE.

Kumar, Santosh S., Kumar Anupam, Tien F., FWA, 2009. Analyzing Effect of Tire Groove Pattern on Hydroplaning Speed. Singapore: Journal of the Eastern Asia Society for Transportation Studies, Vol.8.

Refbacks

  • There are currently no refbacks.