VERIFICATION OF SCHRENK METHOD FOR WING LOADING ANALYSIS OF SMALL UNMANNED AIRCRAFT USING NAVIERSTOKES BASED CFD SIMULATION

Arifin Rasyadi Soemaryanto, Nurhayyan Halim Rosid

Abstract

Prediction of an aerodynamic load acting on a wing or usually called wing loading becomes an important stage for structural analysis. Several methods have been used in estimating the wing loading. Schrenk approximation method is commonly used to achieve the fast estimation of lift distribution along wingspan, but in order to achieve a high level accuracy of aerodynamic prediction, computational fluid dynamics (CFD) with Navier Stokes-based equation can be used. LAPAN Surveillance UAV (LSU series) has been chosen to represent an aerodynamics analysis on generic small unmanned aircraft with twinboom vertical stabilizer configuration. This study was focused to verify the Schrenk approximation method using high accuracy numerical simulation (CFD). The goal of this study was to determine the lift distribution along wingspan and a number of errors between Schrenk approximation and CFD method. In this study, Schrenk approximation result showed similarity with the CFX simulation. So the two results have been verified in analysis of wing loading.

 

ABSTRAK

Prediksi dari beban aerodinamika yang terjadi pada sayap menjadi salah satu tahap yang penting dalam analisis struktur perancangan pesawat. Beberapa metode telah digunakan untuk mengestimasi besarnya beban aerodinamika pada sayap. Metode Schrenk umum digunakan untuk estimasi cepat perhitungan besar distribusi gaya angkat di sepanjang sayap. Guna mencapai tingkat akurasi yang tinggi dari prediksi aerodinamika, simulasi Computational Fluid Dynamics (CFD) dengan berbasis persamaan Navier-Stokes dapat digunakan. Pesawat nirawak LSU dipilih untuk merepresentasikan analisis aerodinamika pada pesawat nirawak dengan konfigurasi twin-tailboom pusher. Fokus dari studi yang dilakukan adalah untuk memverifikasi dari metode pendekatan dari Schrenk dengan menggunakan metode yang memiliki akurasi tinggi seperti simulasi CFD. Tujuan dari studi adalah untuk menghitung distribusi gaya angkat sepanjang sayap dan menentukan seberapa besar error dari kedua metode.

Keywords

aerodynamic loads; CFD; unmanned aircraft; beban aerodinamis; CFD; pesawat udara tanpa awak

Full Text:

PDF

References

Kurukularachchi, L., Prince, R., & Munasinghe, S. R., 2014. Stability and Control Analysis in Twin-Boom Vertical Stabilizer Unmanned Aerial Vehicle (UAV). International Journal of Scientific and Research Publications, 4(2), 1–5.

Luiz, F., & Bussamra, D. S., 2009. A Simplified Geometric Method for Wing Loads Estimation. Control, (2).

Oktay, E., Akay, H. U., & Sehitoglu, O. T., 2014. Three-Dimensional Structural Topology Optimization of Aerial Vehicles Under Aerodynamic Loads. Computers and Fluids, 92, 225–232. https:// doi.org/ 10.1016/j.compfluid.2013.11.018.

Panagiotou, P., Kaparos, P., Salpingidou, C., & Yakinthos, K., 2016. Aerodynamic design of a MALE UAV. Aerospace Science and Technology, 50, 127–138. https://doi.org/10.1016/j.ast.2015.12.033.

Panagiotou, P., Tsavlidis, I., & Yakinthos, K., 2016. Winglet design and optimization for a MALE UAV using CFD. Aerospace Science and Technology, 53, 207–219. https://doi.org/10.1016/j.ast.2014.09.006.

Putra, C., 2016. Comparative Study between Schrenk and CFD Analysis for Predicting Lift Distribution along Wing Span of Glider Aircraft. In Aerospace Science and ‘Technofogy in Indonesia.

Rasyadi, A., 2015. Verification of Aerodynamics Characteristic in Twin Tail-Boom Pusher Unmanned Aircraft Configuration Using Numerical Method. In Advance inAerospace Science and Technology in Indonesia, Vol. 1.

Schrenk, O., 1940. A Simple Approximation Method for Obtaining the Spanwise Lift Distribution. Washington.

Wulf, A., 1995. Tuned grid generation with ICEM CFD. In Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions (477–488). USA.

XU Lei, L. H., 2008. The Technology of Numerical Simulation Based on ANSYS ICEM CFD and CFX Software. Mechanical Engineer.

Refbacks

  • There are currently no refbacks.