Structure Relaxation Disruption on Temperature-dependence of Polymerization of HTPB-based Polyurethane

Afni Restasari, Nur Hamid, Leonard Marpaung, Andi Rusnaenah, Adi Sukma, Rahmawati Sukma

Abstract

The temperature-dependence of polymerization rate of hydroxyl-terminated polybutadiene (HTPB)-based polyurethane can be disrupted by a structure relaxation of polymer.  Objective of the study is to investigate the disruption on the polyurethane (PU) formed of various molecular weight of HTPB. The study was carried out by applying temperature of 50, 60 and 70 oC in measuring viscosity until 80 minutes of reaction. The sample that were used is HTPB with various molecular weight and Toluene diisocyanate (TDI). Based on decreasing value of viscosity, it is obtained that relaxation temperature of HTPB-based PU is around 60 – 70 oC. By applying Eyring equation of flow, it is found that relaxation of structure causes the existence of relaxation dominant-time (RDT). RDT is the reaction time at which molar volume reaches the maximum value. Furthermore, by determining activation entropy, the RDT was revealed to be a borderline between two type of polymerization. Linear reaction occurs before RDT, while cross-link reaction occurs after RDT. From structure point of view, PU-polymerization type of HTPB with low molecular weight tend to be more sensitive towards structure relaxation which is originated from hard segment.

 

 

Keywords

Polymerization, Polyurethane; Relaxation temperature; Temperature effect

Full Text:

PDF

References

Ashgar, M. A., Qamar, I., Hassan, A., & Alvi, M. A. (2019). Rheokinetic Analysis of HTPB-TDI Based Polyurethane Binder System. IEEE Xplore. https://doi.org/10.1109/ICASE48783.2019.9059201

Billmeyer, F. W. (1962). Textbook of Polymer Science. John Willey and Sons Ltd.

Brzić, S. J., Jelisavac, L. N., Galović, J. R., Simić, D. M., & Petković, J. L. (2014). Viscoelastic Properties of Hydroxyl-terminated Poly(butadiene)-based Composite Rocket Propellants. Hemijska Industrija, 68(4), 435–443. https://doi.org/10.2298/HEMIND130426067B

Cheikh, W., Rózsa, Z. B., López, C. O. C., Mizsey, P., Viskolcz, B., Szori, M., & Fejes, Z. (2019). Urethane Formation with an Excess of Isocyanate or Alcohol: Experimental and Ab Initio Study. Polymers, 11(1543). https://doi.org/10.3390/polym11101543

Dey, A., Sikder, A. K., & Athar, J. (2017). Micro-structural Effect on Hydroxyl Terminated Poly Butadiene ( HTPB ) Prepolymer and HTPB Based Composite Propellant. Journal of Molecular Nanotechnology and Nanomedicine, 1(1).

Deylami, A., & Kebritchi, A. (2020). Investigating the Effect of Molecular Weight on Chemorheology of Hydroxyl Terminated Polybutadine gumstock. IChEC, 15–17.

Dupenne, D., Roggero, A., Dantras, E., Lonjon, A., Lacabanne, C., & Pierré, T. (2017). Dynamic Molecular Mobility of Polyurethane by A Broad Range Dielectric and Mechanical Analysis. Journal of Non-Crystalline Solids, 468, 46–51. https://doi.org/10.1016/j.jnoncrysol.2017.04.022

Espenson, J. (2002). Chemical Kinetics and Reaction Mechanisms (2nd ed.). McGraw-Hill Education.

Florczak, B. (2014). Viscosity Testing of HTPB Rubber Based Pre-binders. Central European Journal of Energetic Materials, 11(4), 625–637.

Guo, J., Chai, T., Liu, Y., Cui, J., Ma, H., Jing, S., Zhong, L., Qin, S., Wang, G., & Ren, X. (2018). Kinetic Research on the Curing Reaction of Hydroxyl-Terminated Polybutadiene Based Polyurethane Binder System via FT-IR Measurements. Coatings, 8(175), 1–9. https://doi.org/10.3390/coatings8050175

Hsissou, R., Hilali, M., Dagdag, O., Adder, F., Elbachiri, A., & Rafik, M. (2022). Rheological Behavior Models of Polymers. Biointerface Research in Applied Chemistry, 12(1), 1263–1272. https://doi.org/10.33263/BRIAC121.12631272

Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., & Elharfi, A. (2021). Polymer Composite Materials: A Comprehensive Review. Composite Structures, 262(113640). https://doi.org/10.1016/j.compstruct.2021.113640

Kakavas-Papaniaros, P. A. (2020). On The Distribution of Particles in Propellant Solids. Acta Mechanica, 3, 863–875. https://doi.org/10.1007/s00707-019-02553-1

Kohga, M. (2012). Dynamic Mechanical Properties of Hydroxyl-terminated Polybutadiene Containing Polytetrahydrofuran as A Plasticizer. Nihon Reoroji Gakkaishi, 40(4), 185–193. https://doi.org/10.1678/rheology.40.185

Malczewska, B., & Biczyński, A. (2017). Comparison between Different Models for Rheological Characterization of Sludge from Settling Tank. Journal of Water and Land Development, 34(1), 191–196. https://doi.org/10.1515/jwld-2017-0053

Muraki, M. (2013). Tribology. Nikkan Kogyo Shimbun.

Ou, Y., Sun, Y., & Jiao, Q. (2018). Properties Related to Linear and Branched Network Structure of Hydroxyl Terminated Polybutadiene. E-Polymers, 18(3), 267–274. https://doi.org/10.1515/epoly-2017-0223

Restasari, A., & Abdillah, L. H. (2017). Pengaruh Dioctyl Adipate Terhadap Pot-Life Proopelan Berformula AP Trimoda. Prosiding SIPTEKGAN XXI, 314–322.

Restasari, A., Abdillah, L. H., Ardianingsih, R., Wicaksono, B., & Budi, R. S. (2020). the Compatibility of Model for Low Shear Flow Analysis in Developing Plasticized HTPB-Based Binder. Spektra: Jurnal Fisika Dan Aplikasinya, 5(3), 189–200. https://doi.org/10.21009/spektra.053.03

Rosa Junior, A. C. P., Cruz, C., Santana, W. S., & Moret, M. A. (2019). Characterization of the Non-Arrhenius Behavior of Supercooled Liquids by Modeling Nonadditive Stochastic Systems. Physical Review E, 100(2). https://doi.org/10.1103/PhysRevE.100.022139

Rosita, G. (2016). Retikulasi Hidroxy Terminated Polybutadiene (HTPB) Mandiri Dengan Toluene Diisocyanate (TDI) Membentuk Poliuretan Sebagai Fuel Binder Propelan. Jurnal Teknologi Dirgantara, 14(1), 51–60.

Rueda, M. M., Auscher, M. C., Fulchiron, R., Périé, T., Martin, G., Sonntag, P., & Cassagnau, P. (2017). Rheology and Applications of Highly Filled Polymers: A Review of Current Understanding. Progress in Polymer Science, 66, 22–53. https://doi.org/10.1016/j.progpolymsci.2016.12.007

Sikder, B. K., & Jana, T. (2018). Effect of Solvent and Functionality on the Physical Properties of Hydroxyl-Terminated Polybutadiene (HTPB)-Based Polyurethane. ACS Omega, 3(3), 3004–3013. https://doi.org/10.1021/acsomega.8b00022

Szycher, M. (2013). Szycher’s Handbook of Polyurethanes. CRC Press. https://doi.org/10.1021/ja004704k

Ueda, T. (2019). Read from Measurement: Basic of Rheology. Nikkan Kogyo Shinkai.

Wibowo, H. B., Dharmawan, W. C., Wibowo, R. S. M., & Yulianto, A. (2019). Kinetic Study of HTPB (Hydroxy Terminated Polybutadiene) Synthesis Using Infrared Spectroscopy. Indonesian Journal of Chemistry. https://doi.org/10.22146/ijc.49863

Young, J. S., & Bowman, C. N. (1999). Effect of Polymerization Temperature and Cross-linker Concentration on Reaction Diffusion Controlled Termination. Macromolecules, 32(19), 6073–6081. https://doi.org/10.1021/ma9902955

Zajac, M., Kahl, H., Schade, B., Rodel, T., Dionisio, M., & Beiner, M. (2017). Relaxation Behavior of Polyurethane Networks with Different Composition and Crosslinking Density. Polymer, 111, 83–90. https://doi.org/10.1016/j.polymer.2017.01.032

Refbacks

  • There are currently no refbacks.