ESTIMATION OF TIDAL ENERGY DISSIPATION AND DIAPYCNAL DIFFUSIVITY IN THE INDONESIAN SEAS

I Wayan Gede Astawa Karang, Fumihiko Nishio, Takahiro Osawa

Abstract

The Indonesian Seas separating the Indian Ocean from the West Pacific Oceanare representative regions of strong tidal mixing in the world oceans. In the present study,we first carry out numerical simulation of the barotropic tidal elevation field in theIndonesian Seas using horizontally two-dimensional primitive equation model. It is foundthat, to reproduce realistic tidal elevations in the Indonesian Seas, the energy lost by theincoming barotropic tides to internal waves within the Indonesian seas should be taken intoaccount. The numerical experiments show that the model predicted tidal elevations in theIndonesian Seas best fit the observed data when we take into account the baroclinic energyconversion in the Indonesian Seas ~86.1 GW for the M2 tidal constituent and ~134.6 GWfor the major four tidal constituents (M2, S2, K1, O1). For this baroclinic energy conversion,the value of Kñ averaged within the eastern area (Halmahera, Seram, Banda and MalukuSeas), the western area (Makassar and Flores Seas), and the southern area (Lombok Straitand Timor Passage) are estimated to be ~23 × 10-4 m2s-1, ~5 × 10-4 m2s-1, and ~10× 10-4m2s-1, respectively. This value is about 1 order of magnitude more than assumed for theIndonesian Seas in previous ocean general circulation models. We offer this study as awarning against using diapycnal diffusivity just as a tuning parameter to reproduce largescalephenomena.

Full Text:

PDF

Refbacks

  • There are currently no refbacks.