LAND COVER CLASSIFICATION ALOS AVNIR DATA USING IKONOS AS REFERENCE

Bambang Trisakti, Dini Oktaviana Ambarwati

Abstract

Abstract.  Advanced Land Observation Satellite (ALOS) is a Japanese satellite equipped with 3  sensors  i.e.,  PRISM,  AVNIR,  and  PALSAR.  The  Advanced  Visible  and  Near  Infrared Radiometer (AVNIR) provides multi spectral sensors ranging from Visible to Near Infrared to observe  land  and  coastal  zones.  It  has  10  meter  spatial  resolution,  which  can  be  used  to map  land  cover  with  a  scale  of 1:25000.  The  purpose  of  this  research  was  to  determineclassification  for  land  cover  mapping  using  ALOS  AVNIR  data.  Training  samples  were collected  for  11  land  cover  classes  from  Bromo  volcano  by  visually  referring  to  very  high resolution  data  of  IKONOS  panchromatic  data.  The  training  samples  were  divided  into samples  for  classification  input  and  samples  for  accuracy  evaluation.  Principal  component analysis (PCA) was conducted for AVNIR data, and the generated PCA bands were classified using Maximum Likehood  Enhanced Neighbor method. The classification result was filtered and  re-classed  into  8  classes.  Misclassifications  were  evaluated  and  corrected  in  the  post processing  stage.  The  accuracy  of  classifications  results,  before  and  after  post  processing, were  evaluated  using  confusion  matrix  method.  The  result  showed  that  Maximum Likelihood  Enhanced  Neighbor  classifier  with  post  processing  can  produce  land  cover classification  result  of  AVNIR  data  with  good  accuracy  (total  accuracy  94%  and  kappa statistic 0.92).  ALOS AVNIR has been proven as a potential satellite data to map land cover in the study area with good accuracy.

Full Text:

PDF

Refbacks

  • There are currently no refbacks.