ANALYSIS OF SPOT-6 DATA FUSION USING GRAM-SCHMIDT SPECTRAL SHARPENING ON RURAL AREAS

Danang Surya Candra

Abstract

Image fusion is a process to generate higher spatial resolution multispectral images by fusion of lower resolution multispectral images and higher resolution panchromatic images. It is used to generate not only visually appealing images but also provide detailed images to support applications in remote sensing field, including rural area. The aim of this study was to evaluate the performance of SPOT-6 data fusion using Gram-Schmidt Spectral Sharpening (GS) method on rural areas. GS method was compared with Principle Component Spectral Sharpening (PC) method to evaluate the reliability of GS method. In this study, the performance of GS was presented based on multispectral and panchromatic of SPOT-6 images. The spatial resolution of the multispectral (MS) image was enhanced by merging the high resolution Panchromatic (Pan) image in GS method. The fused image of GS and PC were assessed visually and statistically. Relative Mean Difference (RMD), Relative Variation Difference (RVD), and Peak Signal to Noise Ratio (PSNR) Index were used to assess the fused image statistically. The test sites of rural areas were devided into four main areas i.e., whole area, rice field area, forest area, and settlement. Based on the results, the visual quality of the fused image using GS method was better than using PC method. The color of the fused image using GS was better and more natural than using PC. In the statistical assessment, the RMD results of both methods were similar. In the RVD results, GS method was better then PC method especially in band 1 and band 3. GS method was better than PC method in PSNR result for each test site. It was observed that the Gram-Schmidt method provides the best performance for each band and test site. Thus, GS was a robust method for SPOT-6 data fusion especially on rural areas.

Full Text:

PDF

Refbacks

  • There are currently no refbacks.