DEVELOPMENT OF DISSOLVED OXYGEN CONCENTRATION EXTRACTION MODEL USING LANDSAT DATA CASE STUDY: RINGGUNG COASTAL WATERS
Abstract
Water is a key component to the process of earth’s life. However, with increasing industrial development and anthropogenic activities, water quality has been decreased dramatically. Therefore, monitoring is necessary to anticipate the threat of contamination and to take effective action at all levels in local or central government. Methods or algorithms were proposed for detecting or mapping or extraction the concentrations of dissolved oxygen (DO) derived from Landsat remote sensing imagery using empirical formulation. The aim of this study to monitor the quality of coastal waters over large areas. The method begins with the calculation of water surface temperature derived from Landsat data, using the correlation function obtained by correlating the temperature measurement by the infrared band reflectance values. Then the image is used to calculate the concentration of DO using the correlation function. the correlation function is obtained by correlating the results of field measurements of DO with temperature. The study conducted in the Ringgung coastal waters located in Padang Cermin District, Pesawaran municipal conducted on August 7 to 11, 2012. Based on the analysis, dissolved oxygen concentration of Ringgung coastal waters is inversely proportional to the amount of fresh water entering the coastal waters and directly proportional to the aeration process. As a result, in June the concentration of dissolved oxygen near the beach (on shore water) greater than in the offshore water. While in August, the concentration of dissolved oxygen near the coast (on shore water) is lower than in the offshore water.
Keywords
Full Text:
PDFReferences
Bilge F., Yazici B., Dogeroglu T., Ayday C., (2003), Statistical evaluation of remotely sensed data for water quality monitoring. Int. J. Remote Sens., 24 (24): 5317–5326.
Dekker AG, Vos RJ, Peters SWM, (2002), Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. Int. J. of Remote Sensing 23: 15-35.
Dekker A., Zamurovi´c-Nenad Ž., Hoogenboom H., Peters S., (1996), Remote sensing, ecological water quality modelling and in situ measurements: A case study in shallow lakes. Hydrol. Sci. J. 41: 531–547.
Effendi H., (2003), Telaah kwalitas air bagi pengelolaan sumber daya dan lingkungan perairan, Yogyakarta, Penerbit Kanisius.
Farag H., El-Gamal A., (2011), Assessment of the Eutrophic Status of Lake Burullus (Egypt) using Remote Sensing , Internat. journal of environmental science and engineering 2: 61- 74.
Fraden J., 2004, Handbook of Modern Sensors. New York: AIP Press/Springer; 508-510.
Giardino C., Brando VE, Dekker AG, Strömbeck N., Candiani G., (2007), Assessment of water quality in Lake Garda (Italy) using Hyperion. Remote Sensing of Environment 109: 183–195.
Hereher EM, Salem IM, Darwish HD, (2010), Mapping water quality of Burullus Lagoon using remote sensing and geographic information system. Journal of American Science 7(1).
Karakaya N., Evrendilek FG, Aslan G., Gungor K., Karaka SD, (2011), Monitoring of lake water quality along w ith trophic gradient using landsat data. Int. J. Environ. Sci. Tech. 8 (4): 817-822, ISSN 1735-147.
Kementerian Negara Lingkungan Hidup, (2003), Keputusan Menteri Lingkungan Hidup No. 115 Tahun 2003 tentang Penetapan Status Mutu Air. Jakarta.
Kementerian Negara Lingkungan Hidup, (2010), Peraturan Menteri Negara Lingkungan Hidup Nomor 01 Tahun 2010 Tentang Tata Laksana Pengendalian Pencemaran Air. Jakarta.
Kementerian Negara Lingkungan Hidup, (1993), Undang-undang Nomor 32 Tahun 1993 tentang Perlindungan dan Pengelolaan Lingkungan Hidup. Jakarta.
Koponen S., (2006), Remote sensing of water quality for Finnish lakes and coastal areas. Helsinki University of Technology Laboratory of Space Technology Publications, Report 67.
Kutser T., Pierson DC, Kallio KY, Reinart A., Sobek S., (2005), Mapping lake CDOM by satellite remote sensing. Remote Sens. Environ. 94(4): 535–540.
McClain EP, Pichel WP, Walton CC, (1985), Comparative performance of AVHRR-based multichannel sea surface temperatures. Journal of Geophysical Research, 90:11587–11601.
Lin J., Tang D., Alpers W., Wang S., (2014), Response of dissolved oxygen and related marine ecological parameters to a tropical cyclone in the South China Sea. Advanced in Space Research 53(7): 1081 -1091.
Pulliainen J., Kallio K., Eloheimo K., Koponen S., Servomaa H., Hannonen T., Tauriainen S., Hallikainen M., (2001), A semi-operative approach to lake water quality retrieval from remote sensing data. Sci. Total Environ. 268(1-3): 79–93.
Reid JL, (1974), Ocean Circulation In: oceanography: the last Frontier (r.C. vetter, ed). Voice of America, washington: 225 – 239.
Ritchie JC, Schiebe FR, (2000), Water quality. In: G.A. Schultz and E.T. Engman (eds.), Remote sensing in hydrology and water management, Springer-Verlag, Berlin: Germany 287-303; 351-352.
Ritchie JC, Charles MC, (1996), Comparison of Measured Suspended Sediment Concentration Estimated from Landsat MSS data. Int J. Remote Sensing 9(3): 379-387.
Roland F., Caraco FN, Cole JJ, (1999), Rapid and precise determination of dissolved oxygen by spectrophotometry: Evaluation of interference from color and turbidity, Limnol. Oceanogr., 44(4): 1148–1154.
Salmin, (2000), Kadar Oksigen Terlarut di Perairan Sungai Dadap, Goba, Muara Karang dan Teluk Banten. Dalam : Foraminifera Sebagai Bioindikator Pencemaran, Hasil Studi di Perairan Estuarin Sungai Dadap, Tangerang, P3O – LIPI, 42 – 46.
Schalles JF, Gitelson AA, Yacobi YZ, Kroenke AE, (1998), Estimation of chlorophyll a from time series mesurements of high spectral resolution reflectance in an eutrophic lake. J. of Physiology. 34:383-390.
Sudheer KP, Chaubey I., Garg V., (2006), Lake water quality assessment from Landsat Thematic Mapper data using neural network: an approach to optimal band combination selection. J. Am. Water Resour. As. 42 (6): 1683–1695.
Thomas ML, Ralph WK, Jonathan WC, (2004), Remote Sensing and Image Interpretation, 5 th edition, United State of America, pp. 4761.
Warlina L., (1985), Pengaruh Waktu Inkubasi BOD Pada Berbagai Limbah, FMIPA Universitas Indonesia, Jakarta.
Zhang Y., Pulliainen JT, Koponen SS, Hallikainen MT, (2003), Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland. IEEET. Geosci. Remote, 41 (3): 622–629.
Zoloratev VM, Demin AV, (1977), Optical constants of water over a broad range ofwavelengths, 0.1 A – 1 m, Optical spectroscopy USSR 43(2): 157.
Refbacks
- There are currently no refbacks.