THE EFFECT OF ENVIRONMENTAL CONDITION CHANGES ON DISTRIBUTION OF URBAN HEAT ISLAND IN JAKARTA BASED ON REMOTE SENSING DATA
Abstract
Anthropogenic activities of urban growth and development in the area of Jakarta has caused increasingly uncomfortable climatic conditions and tended to be warmer and potentially cause the urban heat island (UHI). This phenomenon can be monitored by observing the air temperature measured by climatological station, but the scope is relatively limited. Therefore, the utilization of remote sensing data is very important in monitoring the UHI with wider coverage and effective. In addition, the remote sensing data can also be used to map the pattern of changes in environmental conditions (microclimate). This study aimed to analyze the effect of changes in environmental conditions (land use/cover, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Build-up Index (NDBI)) toward the spread of the urban heat island (UHI). In this case, the UHI was identified from pattern changes of Land Surface Temperature (LST) in Jakarta based on data from remote sensing. The data used was Landsat 7 in 2007 and Landsat 8 in 2013 for parameter extraction environmental conditions, namely: land use cover, NDVI, NDBI, and LST. The analysis showed that during the period 2007 to 2013, there has been a change in the condition of the land use/cover, impairment NDVI, and expansion NDBI that trigger an increase in LST and the formation of heat islands in Jakarta, especially in the area of business centers, main street and surrounding area, as well as in residential areas.
Keywords
Full Text:
PDFReferences
Cibula, WG, Zetka EF, Rickman DL, (1992), Response of Thematic Bands to Plant Water Stress, International Journal of Remote Sensing 13(10):1869–1880. doi: 10.1080/ 01431169208904236.
EPA (Environmental Protection Agency), (2010), Reducing Urban Heat Island: Compendium of Strategies. Urban Heat Island Basics Draft.
Fabrizi R., Bonafoni S., Biondi R., (2010), Satellite and Ground-Based Sensors for the Urban Heat Island Analysis in the City of Rome. Remote Sensing (2):1400-1415. doi: 10. 3390/rs2051400.
Gao B., (1996), NDWI–A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space. Remote Sensing of Environment 58(3):257–266. doi:10.1016/S0034-4257(96)00067-3.
Hinkel KM, Nelson FE, Klene AE, Bell JH, (2003), The Urban Heat Island in Winter at Barrow. Alaska International Journal of Climatology 23(15): 1889 – 1905.doi: 10.1002/joc.971.
Imhoff ML, Zhang P., Wolfe RE, Bounoua L., (2010), Remote Sensing of the urban heat island effect across biomes in the continental USA. Remote sensing of environment 114 (3): 504 – 513. doi: 10. 1016/j.rse.2009.10.008.
Khomarudin MR, (2004), Mendeteksi Pulau Panas (Heat Island) dengan Data Satelit Penginderaan Jauh. Warta LAPAN 6(2): 74 – 81.
Kim HH, (1992), Urban heat island. International Journal of Remote Sensing 13(12):2319–2336.
Landsat Project Science Office, (2002), Landsat 7 Science Data User’s Handbook. URL: http://ltpwww.gsfc.nasa.gov/IAS/handbook/ handbook_toc.html, Goddard Space Flight Center, NASA, Washington, DC.
Li ZL, Becker F., (1993), Feasibility of Land Surface Temperature and Emissivity Determination from AVHRR Data. Remote Sensing of Environment 43(1): 67–85. doi: 10.1016/0034-4257(93)90065-6.
Li ZL, Tang BH, Wu H., Ren H., Yan G., Wan Z., Trigo IF, Sobrino JA, (2013), Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment 131: 14 – 37. doi: 10.1016/j. rse.2012.12.008.
Liu L., Zhang Y., (2011), Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Remote Sens. 3: 1535-1552; doi:10.3390/ rs3071535.
Liu Y., Hiyama T., Yamaguchi Y., (2006), Scaling of Land Surface Temperature using Satellite Data: A Case Examination on ASTER and MODIS Products Over a Heterogeneous Terrain Area. Remote Sensing of Environment 105(2): 115–128. doi: 10.1016/j.rse.2006. 06.012.
Masson V., (2006), Urban surface modeling and the meso-scale impact of cities. Theoretical and applied climatology 84 (1-3): 35– 45.doi: 10.1007/s00704-005-0142-3.
Neteler M., (2010), Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data. Remote Sensing 2(1): 333–351.
Nichol J., (2005), Remote Sensing of Urban Heat Island by Day and Night. Photogrammetric Engineering and Remote Sensing 71(5): 613 – 621.
Nichol JE, (1994), A GIS Based Approach to Microclimate Monitoring in Singapore’s High Rise Housing Estates, Photogrammetric Engineering & Remote Sensing, 60(10), 1225–1232.doi:10.3390/rs1020333.
Nichol JE, (1996a), High Resolution Surface Temperature Patterns Related to Urban Morphology in a Tropical City: a Satellite-Based Study. Journal of Applied Meteorology 35(1): 135–146.
Nichol JE, (1996b), Analysis of the Urban Thermal Environment of Singapore using Landsat Data. Environment & Planning B: Planning & Design 23:733–747.
Ochi, S., D., Uchihama, W., Takeuchi, and Y., Yasuoka, (2002), Monitoring Urban Heat Environment using MODIS Data for Main Cities in East Asia. Proceedings Of The Asian Conference On GIS, GPS, Aerial Photography and Remote Sensing, Bangkok, Thailand.
Oke T.R, (1987), Boundary Layer Climate, 2nd Ed., Routledge. London, UK. 435.
Oke TR, (1973), City Size and the Urban Heat Island. Atmos. Environ. 7(8): 769-779. doi: 10.1016/0004-6981(73)90140-6.
Oke TR, (1997), Urban Climates and Global Environmental Change, In Thompson, R.D. and A. Perry (eds). Applied Climatology: Principles & Practices, New York, NY: Routledge. 273 – 287.
Ottlé C., Stoll M., (1993), Effect of Atmospheric Absorption and Surface Emissivity on the Determination of Land Surface Temperature from Infrared Satellite Data. International Journal of Remote Sensing 14(10): 2025–2037. doi:10.1080/0143116 9308954018.
Philandras CM, Metaxas DA, Nastos PT, (1999), Climate Variability and Urbanization in Athens. TheorApplClimatol 63:65–72.
Prasasti I., Parwati, Sari NM, Febrianti N., (2015), Analisis Perubahan Sebaran Pulau Panas Perkotaan (Urban Heat Island) di Wilayah DKI Jakarta dan Hubungannya dengan Perubahan Lahan, Kondisi Vegetasi, dan Perkembangan Kawasan Terbangun Menggunakan Data Penginderaan Jauh. In Prosiding Pertemuan Ilmiah Tahunan XX. IPB-Bogor, 378 – 386.
Prata AJ, Caselles V., Coll C., Sobrino JA, Ottlé C., (1995), Thermal Remote Sensingof Land Surface Temperature from Satellites: Current Status and Future Prospects. Remote Sensing Reviews12: 175–224.
Rao PK, (1972), Remote Sensing of “Urban Heat Islands†from an Environment Satellite. Bull. Am. Meteorol. Soc. 53: 647-448.
Roth M., Oke TR, Emery WJ, (1989), Satellite Derived Urban Heat Islands from three Coastal Cities and the Utilisation of Such Data in Urban Climatology. International Journal of Remote Sensing 10(11):1699–1720.
Shangming D., Bo D., (2001), Analysis of the Effects on Urban Heat Island by Satellite Remote Sensing. Paper presented at the 22nd Asian Conference on Remote Sensing, Singapore.
Stone B., (2005), Urban Heat and Air Pollution - An Emerging Role for Planners in the Climate Change Debate. Journal of the American Planning Association 71:13-25.
Streutker DR, (2002), A Remote Sensing Study of the Urban Heat Island of Houston, Texas. International Journal Remote Sensing 23(13): 2595 – 2608.
Theeuwes NE, Steeneveld GJ, Ronda RJ, Heusinkveld BG, Holtslag AAM, (2012), Mitigation of the urban heat island effect using vegetation and water bodies. Paper pada ICUC8 – 8th International Conference on Urban Climates, 6th – 10th August, 2012, UCD, Dublin Ireland.
Torok S., Morris C., Skinner C., Plummer N., (2001), Urban Heat Island Features of Southeast Australian Towns. Aust. Met. Magazine 50 (1): 1 – 13.
Vauclin M.,Vieira R., Bernard R., Hatfield JL, (1982), Spatial Variability of Surface Temperature Along Two Transects of a Bare. Water sources Research 18: 1677–1686.
Vidal A., (1991), Atmospheric and Emissivity Correction of Land Surface Temperature Measured from Satellite using Ground Measurements or Satellite Data. International Journal of Remote Sensing 12: 2449–2460.
Weng Q., (2001), A Remote Sensing-GIS Evaluation of Urban Expansion and its Impact on Surface Temperature in the Zhujiang Delta, China. International Journal of Remote Sensing 22(10):1999–2014.
Weng Q., Lu D., Schubring J., (2004), Estimation of Land Surface Temperature-Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sensing of Environment 89(4): 467–483. doi:10.1016/ j.rse.2003.11.005.
Wu H., Jiang J., Zhou J., Zhang H., Zhang L., Ai L., (2005), Dynamics of Urban Expansion in Xi’an City using Landsat TM/ETM+ Data. ActaGeographica Sinica 60(1): 143 – 150.doi: 10.11821/xb200501016.
Xu H., (2007), Extraction of Urban Built-up Land Features from Landsat Imagery Using a Thematic-oriented Index Combination Technique. Photogrammetric Engineering & Remote Sensing 73(12): 1381 – 1391.
Yuan F., Bauer M., (2007), Comparison of Impervious Surface Area and Normalized Difference Vegetation Index as Indicators of Surface Urban Heat Island Effects in Landsat Imagery. Remote Sensing Environment 106 (3): 375 – 386. doi: 10. 1016/j.rse.2006.09.003.
Zha Y., Gao J., Ni S., (2003), Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery. International Journal of Remote Sensing 24(3):583–594. doi: 10.1080/0143116030 4987.
Zhang J., Wang Y., (2008), Study of the Relationships Between the Spatial Extent of Surface Urban Heat Islands and Urban Characteristic Factors Based on Landsat ETM+ Data. Sensors 8(11):7453-7468. doi:10.3390/s8117453.
Refbacks
- There are currently no refbacks.