VERTICAL LAND MOTION AND INUNDATION PROCESSES BASED ON THE INTEGRATION OF REMOTELY SENSED DATA AND IPCC AR5 SCENARIOS IN COASTAL SEMARANG, INDONESIA

Muhammad Rizki Nandika, Setyo Budi Susilo, Vincentius Siregar

Abstract

Vertical land motion (VLM) is an important indicator in obtaining information about relative sea-level rise (SLR) in the coastal environment, but this remains an area of study poorly investigated in Indonesia. The purpose of this study is to investigate the significance of the influence of VLM and SLR on inundation. We address this issue for Semarang, Central Java, by estimating VLM using the small baseline subset time series interferometry SAR method for 24 Sentinel-1 satellite data for the period March 2017 to May 2019. The interferometric synthetic aperture radar (InSAR) method was used to reveal the phase difference between two SAR images with two repetitions of satellite track at different times. The results of this study indicate that the average land subsidence that occurred in Semarang between March 2017 and May 2019 was from (-121) mm/year to + 24 mm/year. Through a combination of VLM and SLR scenario data obtained from the Intergovernmental Panel on Climate Change (IPCC), it was found that the Semarang coastal zone will continue to shrink due to inundation (forecast at 7% in 2065 and 10% in 2100).

Keywords

relative sea-level rise; interferometry; remote sensing; InSAR

Full Text:

PDF

References

Anjasmara, I. M., Yusfania, M., Kurniawan, A., Resmi, A. L. C., & Kurniawan, R. (2017). Analysing surface deformation in Surabaya from Sentinel-1A data using DInSAR method. AIP Conference Proceedings, 1857. doi:10.1063/1.4987119

Blewitt, G., Altamimi, Z., Davis, J., Gross, R., Kup, C.-Y., & Lemoine, F. G. (2010). Geodetic observations and global reference frame contributions to understanding sea-level rise and variability. InJ. A Church, P.L. Woodworth, T. Aarup, & W. S. Wilson (Eds.), Understanding sea-level rise and variability (pp. 256–284). Hoboken, NY: Wiley-Blackwell.

Brecht, H., Dasgupta, S., Laplante, B., Murray, S., & Wheeler, D. (2012.) Sea-level rise and storm surges: High stakes for a small number of developing countries. Journal of Environment & Development, 21(1), 120–138. doi:10.1177/1070496511433601

Cian, F., Blasco, J. M. D., & Carrera, L. (2019). Sentinel-1 for monitoring land subsidence of coastal cities in Africa using PSInSAR: A methodology based on the integration of SNAP and staMPS. Geosciences, 9(3). 124. doi: 0.3390/geosciences9030124

Dasgupta, S., Laplante, B., Murray, S., & Wheeler, D. (2009). Sea-level rise and storm surges: A Comparative Analysis of Impacts in Developing Countries. (Research Working Paper 4901) Washington, DC: World Bank Development Research Group.

Douglas, B. C. (1991). Global sea level rise. Journal of Geophysical Research, 96(C4), 6981–6992. doi:10.1029/91jc00064

Douglas, B. C. (2001). Chapter 3 sea level change in the era of the recording tide gauge. International Geophysics, 75, 37–64. doi:10.1016/S0074-6142(01)80006-1

Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing,39(1), 8–20. doi:10.1109/36.898661

Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J., Herweijer, C., & Chateau, J. (2011). A global ranking of port cities with high exposure to climate extremes. Climatic Change, 104, 89–111. doi:10.1007/s10584-010-9977-4

Islam, L. J. F., Prasetyo, Y., & Sudarsono, B. (2017). Analisis Penurunan Muka Tanah (Land Subsidence) Kota Semarang Menggunakan Citra Sentinel-1 Berdasarkan Metode DInSAR pada Perangkat Lunak SNAP [Semarang City land subsidence analysis using Sentinel-1 images based on the DInSAR method in SNAP software]. J Geod Undip, 6(2), 29-36

Ismullah, I. H. (2004). Pengolahan Fasa untuk Mendapatkan Model Tinggi Permukaan Dijital (DEM) pada Radar Apertur Sintetik Interferometri (INSAR) Data Satelit [Phase processing to obtain a digital surface height model (DEM) on synthetic interferometry aperture radar (INSAR) satellite data]. ITB Journal of Science. doi:10.5614/itbj.sci.2004.36.1.2

Le Cozannet, G., Raucoules, D., Wöppelmann, G., Garcin, M., Da Sylva, S., Meyssignac, B., … Lavigne, F. (2015). Vertical ground motion and historical sea-level records in Dakar (Senegal). Environmental Research Letters, 10. https://doi.org/10.1088/1748-9326/10/8/084016

Martínez-Asensio, A., Wöppelmann, G., Ballu, V., Becker, M., Testut, L., Magnan, A., & Duvat, V. (2019). Relative sea-level rise and the influence of vertical land motion at Tropical Pacific Islands. Global and Planetary Change, 176. doi:10.1016/j.gloplacha.2019.03.008

Massey, A. C., Gehrels, W. R., Charman, D. J., Milne, G. A., Peltier, W. R., Lambeck, K., & Selby, K. A. (2008). Relative sea-level change and postglacial isostatic adjustment along the coast of south Devon, United Kingdom. Journal of Quaternary Science, 23, pp. 415–433. doi:10.1002/jqs.1149

Massonnet, D. & Feigl, K. L. (1998). Radar interferometry and its application to changes in the earth’s surface. Reviews of Geophysics, 36(4), 441–500. doi:10.1029/97RG03139

Peltier, W. R., Farrell, W. E., & Clark, J. A. (1978). Glacial isostasy and relative sea level: A global finite element model. Tectonophysics. doi:10.1016/0040-1951(78)90129-4

Pfeffer, J., Spada, G., Mémin, A., & Boy, J.-P. (2017). Decoding the origins of vertical land motions observed today at coasts. Geophysics Journal International, 210(1), 148–165. doi:10.1093/gji/ggx142

Poitevin, C., Wöppelmann, G., Raucoules, D., Le Cozannet, G., Marcos, M., & Testut, L. (2019). Vertical land motion and relative sea level changes along the coastline of Brest (France) from combined space-borne geodetic methods. Remote Sensing of Environment. doi:10.1016/j.rse.2018.12.035

Schmidt, D.A. & Bürgmann, R. (2003). Time-

dependent land uplift and subsidence in the Santa Clara Valley, California, from a large interferometric synthetic aperture radar data set. Journal of Geophysical Research Solid Earth. doi:10.1029/2002jb002267

Sherman, D. J. & Bird, E. C. F. (1995). Submerging coasts: The effects of a rising sea level on coastal environments. Geographical Review, 85(1), 111–113. doi:10.2307/215563

Sophian, R. I. (2010). Penurunan Muka Tanah di Kota-Kota Besar Pesisir Pantai Utara Jawa (Studi Kasus: Kota Semarang) [Land subsidence in large coastal cities in the north coast of Java (Case Study: Semarang City)]. Bulletin of Scientific Contribution 8(1), 41–60

Sweet, W. V., Kopp, R. E., Weaver, C. P., Obeysekera, W. J., Horton, R. M., Thieler, E. R., & Zervas, C. (2017). Global and regional sea level rise scenarios for the United States. NOAA Technical Report NOS CO-OPS 083. Washington, DC: NOAA/NOS Center for Operational Oceanographic Products and Services.

Vadivel, S. K. P., Kim, D. J., Jung, J., Cho, Y.-K., Han, K.-J., & Jeong, K.-Y. (2019). Sinking tide gauge revealed by space-borne InSAR: Implications for sea level acceleration at Pohang, South Korea. Remote Sensing, 11(3), 277. doi:10.3390/rs11030277

Wöppelmann, G. & Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variability. Reviews of Geophysics, 54, 64–92. doi:10.1002/2015RG000502

Zhou, X., Chang, N.-B., & Li, S. (2009). Applications of SAR interferometry in earth and environmental science research. Sensors, 9, 1879–1912. doi:10.3390/s90301876

Refbacks

  • There are currently no refbacks.