COASTLINE CHANGE ANALYSIS ON BALI ISLAND USING SENTINEL-1 SATELLITE IMAGERY

Suhendra Suhendra, Christopher Ari Setiawan, Teja Arief Wibawa, Berta Berlian Borneo

Abstract

Bali is well-known as a popular tourism location for both local and foreign tourists. There are nine areas designated for tourism, eight of which are coastal. However, due to coastal erosion, the coastline of Bali is changing every year. The purpose of this study is to determine the changes that took place between 2015 and 2020 using Sentinel-1 satellite imagery. The study was conducted along the coastline of Bali Island at coordinates 08° 53' 35.5648" S, 114° 24' 41.8359" E and 08° 00' 46.7865" S, 115° 44' 17.5928" E. The coastlines were identified using the Otsu image thresholding method and linear tidal correction was performed. The coastline change analysis was made using the transect method. Ground truths were conducted in representative areas where major changes had occurred, either as a result of abrasion or accretion. According to the Sentinel-1 analysis, the coastline changes in Bali during the period 2015 – 2020 were mainly caused by abrasion, apart from at Buleleng, which were generally caused by accretion. Abrasion in Bali is dominantly affected by strong currents and high waves meanwhile accretion which having weak currents and low waves was more affected by human factor such as the construction in this study area.

Keywords

Bali, coastline change, Sentinel-1, abrasion, accretion

Full Text:

PDF

References

Artama, K. D., Gede, W., Karang, A., & Putra, N. G. (2019). Deteksi Perubahan Garis Pantai Menggunakan Citra Synthetic Aperture Radar (SAR) di Pesisir Tenggara Bali (Kabupaten Gianyar dan Klungkung) [Detection of Coastline Changes Using Synthetic Aperture Radar (SAR) Imagery on the Southeast Coast of Bali (Gianyar. Journal of Marine and Aquatic Sciences, 5(2), 278–288. https://doi.org/10.24843/jmas.2019.v05.i02.p16

Aryastana, P., Ardantha, I. M., Nugraha, A. E., & Candrayana, K. W. (2017). Coastline Changes Analysis In Buleleng Regency By Using Satellite Data. The 1st Warmadewa University International Conference on Architecture and Civil Engineering, 106–113.

Aryastana, P., Ardantha, I. M., Rahadiani, A. A. S. D., & Candrayana, K. W. (2018). Deteksi Perubahan Garis Pantai Di Kabupaten Karangasem Dengan Penginderaan Jauh [Detection of Coastline Changes in Karangasem Regency with Remote Sensing]. Jurnal Fondasi, 7(2), 94–104. https://doi.org/10.36055/jft.v7i2.4079

Aryastana, P., Eryani, I., & Candrayana, K. (2016). Perubahan Garis Pantai dengan Citra Satelit di Kabupaten Gianyar [Coastline Change with Satellite Imagery in Gianyar Regency]. Paduraksa, 5(2), 70–81. https://doi.org/10.22225/pd.5.2.379.70-81

B-Open Solutions. (2016). elevation — Elevation global DEM manager. Retrieved September 10, 2020, from http://elevation.bopen.eu

Badan Meteorologi Klimatologi dan Geofisika [BMKG]. (n.d.). Pusat Meteorologi Maritim [Maritime Meteorological Center]. Retrieved June 24, 2021, from https://maritim.bmkg.go.id/

BIG Online Tide Prediction. (n.d.). Pengamatan Pasang Surut (Pasut) Real Time, Prediksi dan COAP Data Server [Real Time Tidal Observation, Prediction and COAP Data Server]. Retrieved September 5, 2020, from http://tides.big.go.id/

Damanik, C. (2015). Tiga Tahun, Panjang Garis Pantai Bali Bertambah 123 Km [Three Years, the Length of Bali’s Coastline Increases by 123 Km]. Retrieved November 15, 2020, from https://regional.kompas.com/read/2015/04/15/18272201/Tiga.Tahun.Panjang.Garis.Pantai.Bali.Bertambah.123.Km

Erteza, I. A. (1998). Sandia Report: An Automatic Coastline Detector for Use with SAR Images. Albuquerque, New Mexico.

European Space Agency [ESA]. (2012). Sentinel-1: ESA’s Radar Observatory Mission for GMES Operational Services. Noordwijk: ESA Communications. Retrieved from ESA Communications website: https://sentinel.esa.int/documents/247904/349449/S1_SP-1322_1.pdf

Harahap, S. (1999). Tingkat Pencemaran Perairan Pelabuhan Tanjung Balai Karimun Kepulauan Riau Ditinjau dari Komunitas Makrozoobenthos [Pollution Level of Tanjung Balai Karimun Port Waters Riau Islands Seen from the Makrozoobenthos Community]. Lembaga Penelitian Universitas Riau. Pekanbaru, 26.

Hariyanto, T., Mukhtar, M. K., & Pribadi, C. B. (2018). Evaluasi Perubahan Garis Pantai Akibat Abrasi Dengan Citra Satelit Multitemporal (Studi Kasus: Pesisir Kabupaten Gianyar, Bali) [Evaluation of Coastline Changes Due to Abrasion Using Multitemporal Satellite Imagery (Case Study: Coastal of Gianyar Regency,. Geoid, 14(1), 66. https://doi.org/10.12962/j24423998.v14i1.3822

Herndon, K., Meyer, F., Flores, A., Cherrington, E., & Kucera, L. (2020). What is Synthetic Aperture Radar? Retrieved January 27, 2021, from NASA Earthdata website: https://earthdata.nasa.gov/learn/backgrounders/what-is-sar

Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., & Farris, A. S. (2018). Digital Shoreline Analysis System (DSAS) version 5.0 user guide. Reston, VA: U.S. Geological Survey. https://doi.org/10.3133/ofr20181179

Holden, A. (2016). Environment and Tourism. In Environment and Tourism (3rd ed.). Routledge. https://doi.org/10.4324/9781315767659

Indrawan, I. N. P., Damayanti, A., & Rustanto, A. (2019). Abrasion and accresion at West of Buleleng subdistrict’s coastal area, Bali (case study: Gerokgak Regency, Seririt Regency, Banjar Regency, and Buleleng Regency). IOP Conference Series: Earth and Environmental Science, 311(1). https://doi.org/10.1088/1755-1315/311/1/012010

Karang, I. W. G. A., Nishio, F., Mitnik, L., & Osawa, T. (2012). Spatial-Temporal Distribution and Characteristics of Internal Waves in the Lombok Strait Area Studied by Alos-Palsar Images. Earth Science Research, 1(2), p11. https://doi.org/10.5539/esr.v1n2p11

Kauth, R., & Thomas, G. (1976). The Tasselled Cap -- A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat. LARS Symposia. Retrieved from https://docs.lib.purdue.edu/lars_symp/159

Li, R., Di, K., & Ma, R. (2003). 3-D shoreline extraction from IKONOS satellite imagery. Marine Geodesy, 26(1–2), 107–115. https://doi.org/10.1080/01490410306699

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern, 9(1), 62–66.

PEMSEA, & Bali PMO. (2004). PEMSEA Technical Report No. 11: Southeastern Coast of Bali Initial Risk Assessment. Quezon City, Philippines: GEF/UNDP/IMO Regional Programme on Building Partnerships in Environmental Management for the Seas of East Asia (PEMSEA) and the Bali National ICM Demonstration Project, Environmental Impact Management Agency of Bali Province.

Pramudyanto, B. (2014). Pengendalian Pencemaran dan Kerusakan di Wilayah Pesisir [The Control of Pollution and Damage in Coastal Areas]. Jurnal Lingkar Widyaiswara, 1(4), 21–40. Retrieved from http://juliwi.com/published/E0104/Paper0104_21-40.pdf

Sentinel Australasia Regional Access [SARA]. (n.d.). Sentinel Australasia Regional Access. Retrieved September 1, 2020, from https://copernicus.nci.org.au

Setyandito, O., & Triyanto, J. (2007). Analisa Erosi Dan Perubahan Garis Pantai Pada Pantai Pasir Buatan Dan Sekitarnya Di Takisung, Propinsi Kalimantan Selatan [Analysis of Erosion and Shoreline Changes on Artificial Sand Beach and Its Surroundings in Takisung, South Kalimantan Province]. Jurnal Teknik Sipil Universitas Atma Jaya Yogyakarta, 7(3), 224–235. Retrieved from https://dimensi.petra.ac.id/index.php/uaj/article/view/17432

Suarna, N. (2019). Abrasi Ancam Lahan Pura dan Pemukiman Warga di Karangasem [Abrasion Threatens Temple Land and Residents’ Settlements in Karangasem]. Retrieved February 1, 2021, from https://baliexpress.jawapos.com/read/2019/09/17/156267/abrasi-ancam-lahan-pura-dan-pemukiman-warga-di-karangasem

Sui, L., Wang, J., Yang, X., & Wang, Z. (2020). Spatial-temporal characteristics of coastline changes in Indonesia from 1990 to 2018. Sustainability (Switzerland), 12(8), 1–28. https://doi.org/10.3390/SU12083242

Suniada, I. (2015). Deteksi Perubahan Garis Pantai di Kabupaten Jembrana Bali Dengan Menggunakan Teknologi Penginderaan Jauh [Detection of Coastline Changes in Jembrana Regency, Bali Using Remote Sensing Technology]. Jurnal Kelautan Nasional, 10, 13–20. https://doi.org/10.15578/jkn.v10i1.8

The Copernicus Marine Environment Monitoring Service [CMEMS]. (n.d.). Copernicus Marine Service. Retrieved June 23, 2021, from https://marine.copernicus.eu/

Truckenbrodt, J., Freemantle, T., Williams, C., Jones, T., Small, D., Dubois, C., … Giuliani, G. (2019). Towards sentinel-1 SAR analysis-ready data: A best practices assessment on preparing backscatter data for the cube. Data, 4(3). https://doi.org/10.3390/data4030093

USGS Earth Explorer. (n.d.). EarthExplorer. Retrieved September 1, 2020, from https://earthexplorer.usgs.gov/

Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., & Turner, I. L. (2019). CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling and Software, 122, 104528. https://doi.org/10.1016/j.envsoft.2019.104528

Wicaksono, A., & Winastuti, R. (2020). Kajian Morfodinamika Pesisir dan Kerawanan Abrasi Di Kabupaten Buleleng, Provinsi Bali [Study of Coastal Morphodynamics and Abrasion Vulnerability in Buleleng Regency, Bali Province]. Seminar Nasional Pengelolaan Pesisir Dan Daerah Aliran Sungai K-5, 132–140.

Zollini, S., Alicandro, M., Cuevas-González, M., Baiocchi, V., Dominici, D., & Buscema, P. M. (2020). Shoreline extraction based on an active connection matrix (ACM) image enhancement strategy. Journal of Marine Science and Engineering, 8(1). https://doi.org/10.3390/jmse8010009

Refbacks

  • There are currently no refbacks.