VEGETATION INDICES FROM LANDSAT-8 DATA IN PALABUHANRATU

Hermawan Setiawan, Masita Dwi Mandini Manessa, Hafid Setiadi

Abstract

Land cover will change due to population pressure, resource use, and human interest in space. Measuring the land area is important to determine how much-converted land is positive and negative. The vegetation on land was determined by how densely the plants were spread out. This study is conducted in Palabuhanratu, Sukabumi Regency. Aims to test and compare how accurate EVI and SAVI are at seeing vegetation density. The images used are from Landsat 8 in 2018 and 2022. Calibration is performed using high-resolution images, followed by field surveys with 98 points from polygon sampling. The average accuracy of the results from EVI is 49%, while the average accuracy of the results from SAVI is 45%. So, we can say that the EVI or SAVI based-input gives a similar result on observing the vegetation density in Palabuhanratu.

Keywords

land cover; EVI; SAVI

Full Text:

PDF

References

Wubie, M.A., Assen, M., and Nicolau, M.D. 2016. Patterns, causes, and consequences of land use/cover dynamics in the Gumara watershed of lake Tana basin, Northwestern Ethiopia. Environmental Systems Research, 5. 1-12.

The State of Indonesia’s Forest. 2020. Jakarta: Ministry of Environment and Forestry, Republic of Indonesia

Forest Digest. 2022. Berapa Luas Hutan Indonesia yang Benar?. Accessed on October 23, 2022. https://www.forestdigest.com/detail/1905/luas-hutan-indonesia.

Badan Pusat Statistik. Accessed on October 23, 2022 : https://www.bps.go.id/statictable/2020/02/17/2084/luas- penutupan-lahan-indonesia-di-dalam-dan-di-luar-kawasan-hutan-tahun-2014-2020-menurut-kelas- ribu-ha-.html.

Lembaga Ilmu Pengetahuan Indonesia (LIPI). Forest Restoration a path recovery and well- being. Accessed on October 23, 2022: https://mediaindonesia.com/humaniora/394172/luas-hutan-di-pulau-jawa-tinggal-24.

Jawa Barat dalam angka 2021. 2021. Bandung: BPS.

Kecamatan Palabuhanratu Dalam Angka 2018. 2018. Kabupaten Sukabumi : BPS.

Woyessa, Y.E., Welderufael. W.A. 2021. Impact of land-use change on catchment water balance: a case study in the central region of South Africa. Geoscience Letters, 8, number 34.

Obubu, J.P., et al., 2022. Application of DPSIR model to identify the drivers and impacts of land use and land cover changes and climate change on land, water, and livelihoods in the L. Kyoga basin: implications for sustainable management. Environmental Systems Research, 11. Springer Open Journal.

Kecamatan Palabuhanratu Dalam Angka 2018. 2018. Kabupaten Sukabumi : BPS.

Kecamatan Palabuhanratu Dalam Angka 2021. 2021. Kabupaten Sukabumi : BPS.

Li, F., et al., 2015. The relationships between land use change and demographic dynamics in western Jilin province. Journal of Geographical Sciences, 25, 617–636.

Danoedoro P. (2012). Pengantar Penginderaan Jauh Digital. Yogyakarta. Gadjah Maja University.

Adegun O., Odunuga S., Appia Y., 2015. Dynamics in the landscape and ecological services in system I drainage area of Lagos. Ghana Journal of Geography, 7(1), 75–96.

Lonita, I.B., 2015. Analisis Perubahan Luas Dan Kerapatan Hutan Menggunakan Algoritma Ndvi (Normalized Difference Vegetation Index) dan EVI (Enhanced Vegetation Index) Pada Citra Landsat 7 Etm+ Tahun 2006, 2009, Dan 2012. Skripsi. Semarang.

Doni, L.R., Yuliantina, A., & Show, R.D., 2021. Komparasi Luas Tutupan Lahan di Kota Bandar Lampung Berdasarkan Algoritma NDVI (Normalized Difference Vegetation Index) dan EVI (Enhanced Vegetation Index). Jurnal Geosains Dan Remote Sensing, 2(1), 16-24.

Simarmata, N., e al., 2021. Analisis Transformasi Indeks Ndvi, Ndwi Dan Savi Untuk Identifikasi Kerapatan Vegetasi Mangrove Menggunakan Citra Sentinel Di Pesisir Timur Provinsi Lampung. Jurnal Geografi, 19.

Gilabert, M.A., et al., 2001. A generalized soil-adjusted vegetation index. Remote Sensing of Environment .82, 303–310.

Kecamatan Palabuhanratu Dalam Angka 2018. 2018. Kabupaten Sukabumi : BPS.

USGS Landsat 8 OLI TIRS. Accessed on October 23, 2022. https://earthexplorer.usgs.gov/

Kustiyo, et.al., 2014. Pengembangan Metoda Koreksi Radiometrik Citra Spot 4 Multi-Spektral Dan Multi-Temporal Untuk Mosaik Citra . Akusisi dan Koreksi Pengindraan jauh: Lapan 79 – 81.

Atmospheric Correction, Accessed on October 28, 2022: https://www.usgs.gov/landsat-missions/using-usgs-landsat-level-1-data-product.

Eid, A.M.N, et al., 2022. Inland wetland time-series digital change detection based on SAVI and NDWI indices: Wadi El-Rayan lakes, Egypt. Remote sensing Applications: Society and Environment, 19. 1-18.

Huete, A.R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25. 295–309.

Santos, G.M.D., Melendez-Pastor, I., Navarro-Pedreno, J., 2019. A review of Landsat TM/ETM based vegetation indices as applied to wetland ecosystems. Journal Geography, 2. 1-12.

Li, F., et al., 2015. The relationships between land use change and demographic dynamics in western Jilin province. Journal of Geographical Sciences, 25. 617–636.

Jara, C., Delegido, J., Ayala, J., Lozano, P., Armas, A., Flores, V., 2019. Study of wetlands in the Ecuadorian Andes through the comparison of Landsat-8 and sentinel-2 images. Rev. Teledetection, 53. 45–57.

Lonita, I.B., 2015. Analisis Perubahan Luas Dan Kerapatan Hutan Menggunakan Algoritma Ndvi (Normalized Difference Vegetation Index) Dan Evi (Enhanced Vegetation Index) Pada Citra Landsat 7 Etm+ Tahun 2006, 2009, Dan 2012. Skripsi. Semarang.

Hoek van Dijke A.J., Mallick K., Teuling A.J., Schlerf M., Machwitz M., Hassler S.K., Blume T., Herold M., 2019. Does the normalized difference vegetation index explain spatial and temporal variability in sap velocity in temperate forest ecosystems? Hydrology and Earth System Sciences, 23. 2077–2091.

Ketelitian Peta Dasar. 2019. BSN, Jakarta: Badan Informasi Geospasial.

Othman, A.A., Al-Saady, Y.I., Al-Khafagi, A.K., Gloaguen, R., 2013. Environmental change detection in the central part of Iraq using remote sensing data and GIS. Arabian Journal Geoscience, 7 (3). 1017–1028.

Hu, W., et al., 2015. Deep convolutional neural networks for hyperspectral image classification. J. Sens, 10. 1-15.

Wang, P, et al, 2022. The mediation effect of land surface temperature in the relationship between land use-cover change and energy consumption under seasonal variations. Journal of Cleaner Production. 1- 14.

Zabel f, et al., 2019. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nature Communications, 10.

Molotoks et al., 2018. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Global Change Biol, 24. 5895-5908.

Khan, T.U., et al., 2021. Use of gis and remote sensing data to understand the impacts of land use/land cover changes (Lulcc) on snow leopard (Panthera uncia) habitat in Pakistan Sustain. Times, 13.

Vijith, H., & Dodge-Wan, Dominique., 2020. Applicability of MODIS land cover and Enhanced Vegetation Index (EVI) for the assessment of spatial and temporal changes in strength of vegetation in tropical rainforest region of Borneo. Remote Sensing Applications Society and Environment, 18(3):100311

Fan, H, et al., 2015. Vegetation Index Differencing for Mapping of Rubber Plantations Using Landsat OLI Data. Remote Sens. 7(5). 6041-6058.

Andabili, L, et.al. 2022. Multisensor Assessment of Leaf Area Index across Ecoregions of Ardabil Province, Northwestern Iran. Remote Sens., 14. 5731.

Refbacks

  • There are currently no refbacks.