SPATIAL ANALYSIS OF QUANTITATIVE PRECIPITATION FORECAST ACCURACY BASED ON STRUCTURE AMPLITUDE LOCATION (SAL) TECHNIQUE

Abdullah Ali, Achmad Rifani, Supriatna Supriatna, Yunus Subagyo Swarinoto, Umi Sa'adah

Abstract

Quantitative Precipitation Forecast (QPF) is the final product of a short-term forecasting algorithm (nowcasting) based on weather radar data which is widely used in hydrometeorological aspects. The calculation of the accuracy value using point data on a rainfall gauge often causes a double penalty problem because the QPF prediction results are in the form of spatial objects. This study aims to apply object-based spatial verification in analyzing the accuracy of QPF based on the Short Term Ensemble Prediction System (STEPS) algorithm using the SAL technique. The verification process is carried out by calculating the index value of the structure component (S), amplitude (A), and location (L) in the QPF prediction results based on the results of weather radar observations. The index values for components S and A have a range of -2 to 2, and 0 to 1 for component L with a perfect value of 0. The case study used is the occurrence of heavy rains that caused flooding in Bogor Regency in 2020. SAL verification results from 26 case studies used shows the average value of the components S, A, and L, respectively 0.51, 0.38, and 0.21. As many as 75% of all case studies have S and L component values less than 0.5 which indicate the structure and location of the QPF prediction object is close to the structure and location of the object of observation. A positive value in component A indicates that the QPF prediction results based on the STEPS algorithm tend to be overestimated but on a low scale, namely 0.38 out of 2.

Keywords

weather radar; QPF; SAL; STEPS

Full Text:

PDF

References

Ali, A., Adrianto, R., & Saepudin, M. (2018). Preliminary Study of Horizontal and Vertical Wind Profile Of Quasi-Linear Convective Utilizing Weather Radar Over Western Java Region, Indonesia. International Journal of Remote Sensing and Earth Sciences (IJReSES), 15(2), 177-186.

Ali, A., Deranadyan, G., & Umam, I. H. (2020). An Enhancement to The Quantitative Precipitation Estimation Using Radar-Gauge Merging. International Journal of Remote Sensing and Earth Sciences (IJReSES), 17(1), 65-74.

Ali, A., Supriatna, S., & Sa'adah, U. (2021a). Radar-Based Stochastic Precipitation Nowcasting Using The Short-Term Ensemble Prediction System (Steps)(Case Study: Pangkalan Bun Weather Radar). International Journal of Remote Sensing and Earth Sciences (IJReSES), 18(1), 91-102.

Ali, A., Deranadyan, G., & Sa’adah, U. (2021b). Kajian Awal Pemanfaatan Data Pengindraan Jauh Dalam Implementasi Peringatan Dini Cuaca Esktrem Berbasis Dampak. Prosiding WIN-ID, 1, 27-36.

Ali, A., Umam, I. H., Leijnse, H., & Sa'adah, U. (2021c). Preliminary Study of A Radio Frequency Interference Filter For Non-Polarimetric C-Band Weather Radar In Indonesia (Case Study: Tangerang Weather Radar). International Journal of Remote Sensing and Earth Sciences (IJReSES), 18(2), 189-202.

Ali, A., Muaya, M., & Kristianto, A. (2022a). Identifikasi Evolusi Dan Prediksi Pergerakan Awan Konvektif Berbasis Perangkat Lunak TITAN. Jurnal Ilmiah Geomatika Vol. 28(2), 101-112.

Ali, A., Umam, I. H., Heningtyas, H., Charolidya, R., Sanditya, B., Cempaka, A. P., Teguh Setyawan & Kiki. (2022b). Pengembangan Sistem Peringatan Dini Cuaca Ekstrem Terintegrasi Berbasis Y-Model Webgis Development Methodology (Y-WDM). Jurnal Geografi dan Edukasi Lingkungan (JGEL). Vol.6 No.2 87-100

Ali, A., & Sa’adah, U. (2022c). Implementasi Metode Deteksi Hujan Es Berbasis Data Radar Cuaca Menggunakan Algoritma Severe Hail Index (SHI). Jurnal Fisika Unand, 11(3), 380-386.

Gofa, F., Boucouvala, D., Louka, P., & Flocas, H. A. (2018). Spatial verification approaches as a tool to evaluate the performance of high resolution precipitation forecasts. Atmospheric Research, 208, 78-87.

Golding, B. W. (1998). Nimrod: A system for generating automated very short range forecasts. Meteorological Applications, 5(1), 1-16.

Hidayat, A. M., Aofany, D., Arfianti, D. R., Nugraheni, I. R., & Ali, A. (2019). Prediksi Intensitas Curah Hujan Menggunakan Produk Nowcasting Rtr Dibandingkan Dengan Produk Estimasi Curah Hujan Sri Pada Kejadian Banjir di Palembang Tanggal 12–13 November 2018. Jurnal Meteorologi Klimatologi dan Geofisika, 6(1), 1-12.

Hondl, K. D., Lakshmanan, V., Smith, T. M., & Stumpf, G. J. (2007, January). Warning Decision Support System-Integrated Information (WDSS-II) Progress and Plans. In Extended Abstracts, 23rd Conf. on Interactive Information Processing Sys.

Kigawa, S., Hayashi, T., & Nishimura, T. (2016). Advanced weather radar application technology at JMA. WMO/CIMO/TECO-2016, Madrid, Spain, 27-29 September.

Pierce, C. E., Hardaker, P. J., Collier, C. G., & Haggett, C. M. (2000). GANDOLF: a system for generating automated nowcasts of convective precipitation. Meteorological Applications, 7(4), 341-360.

Pulkkinen, S., Chandrasekar, V., von Lerber, A., & Harri, A. M. (2020). Nowcasting of convective rainfall using volumetric radar observations. IEEE Transactions on Geoscience and Remote Sensing, 58(11), 7845-7859.

Radanovics, S., Vidal, J. P., & Sauquet, E. (2018). Spatial verification of ensemble precipitation: An ensemble version of SAL. Weather and Forecasting, 33(4), 1001-1020.

Smith, S. B (1998). The System for Convection Analysis and Nowcasting (SCAN). Preprints, 16th Conf. on Weather Analysis and Forecasting, Phoenix, AZ, Amer. Meteor. Soc., J22–J24.

Wernli, H., Paulat, M., Hagen, M., & Frei, C. (2009). SAL—A novel quality measure for the verification of quantitative precipitation forecasts. Monthly Weather Review, 136(11), 4470-4487.

Wilson, J. W., Crook, N. A., Mueller, C. K., Sun, J., & Dixon, M. (1998). Nowcasting thunderstorms: A status report. Bulletin of the American Meteorological Society, 79(10), 2079-2100.

Wong, W. K., & Lai, E. S. T. (2006). RAPIDS–Operational blending of nowcast and NWP QPF. In 2nd International Symposium on Quantitative Precipitation Forecasting and Hydrology, Boulder, USA (pp. 4-8).

Yeung, H. Y. (2012). Recent developments and applications of the SWIRLS nowcasting system in Hong Kong. In The 3rd WMO International Symposium on Nowcasting and Very Short-Range Forecasting (pp. 6-10).

Refbacks

  • There are currently no refbacks.