SPATIAL ANALYSIS OF LAND USE AND LAND COVER VARIATIONS AFFECTING TEA PRODUCTION IN GUNUNGMAS PLANTATION THROUGH REMOTE SENSING TECHNIQUES
Abstract
Keywords
Full Text:
PDFReferences
Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052
BIG. (2021). Kode Unsur RBI 2021 Badan Informasi Geospasial.
Bloom, J. D., & Hinrichs, C. C. (2011). Moving local food through conventional food system infrastructure: Value chain framework comparisons and insights. Renewable Agriculture and Food Systems, 26(1), 13–23. https://doi.org/10.1017/S1742170510000384
Chang, K. (2015). World tea production and trade: current and future development. Food and Agriculture Organization of the United Nations.
Dihkan, M., Guneroglu, N., Karsli, F., & Guneroglu, A. (2013). Remote sensing of tea plantations using an SVM classifier and pattern-based accuracy assessment technique. International Journal of Remote Sensing, 34(23), 8549–8565. https://doi.org/10.1080/01431161.2013.845317
Doraiswamy, P. C., Moulin, S., Cook, P. W., & Stern, A. (2003). Crop yield assessment from remote sensing. Photogrammetric Engineering and Remote Sensing, 69(6), 665–674. https://doi.org/10.14358/PERS.69.6.665
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Huang, J., Dai, Q., Wang, H., & Han, D. (2014). Empirical Regression Model Using Ndvi , Meteorological Factors For Estimation Of Wheat Yield In Yunnan , China. 11th International Conference on Hydroinformatics.
Ji, H., Li, X., Wei, X., Liu, W., Zhang, L., & Wang, L. (2020). Mapping 10-m resolution rural settlements using multi-source remote sensing datasets with the google earth engine platform. Remote Sensing, 12(17), 1–23. https://doi.org/10.3390/rs12172832
Kumar, A., Manjunath, K. R., Meenakshi, Bala, R., Suda, R. K., Singh, R. D., & Panigrahy, S. (2013). Field hyperspectral data analysis for discriminating spectral behavior of tea plantations under various management practices. International Journal of Applied Earth Observation and Geoinformation, 23(1), 352–359. https://doi.org/10.1016/j.jag.2012.10.006
Phan, P., Chen, N., Xu, L., & Chen, Z. (2020). Using multi-temporal MODIS NDVI data to monitor tea status and forecast yield: A case study at Tanuyen, Laichau, Vietnam. Remote Sensing, 12(11). https://doi.org/10.3390/rs12111814
Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: A review. Remote Sensing, 12(14). https://doi.org/10.3390/rs12142291
Porter, M. E. (1985). Competitive Advantage: Creating and Sustaining Superior Performance. Free Press.
Rahimi-Ajdadi, F., & Khani, M. (2021). Remote sensing-based detection of tea land losses: The case of Lahijan, Iran. Remote Sensing Applications: Society and Environment, 23(April), 100568. https://doi.org/10.1016/j.rsase.2021.100568
Taylor, D. H., & Fearne, A. (2009). Demand management in fresh food value chains: A framework for analysis and improvement. Supply Chain Management, 14(5), 379–392. https://doi.org/10.1108/13598540910980297
Tippayawong, K. Y., Teeratidyangkul, P., & Ramingwong, S. (2017). Analysis and improvement of a tea value chain. In K. A.M., H. A., G. L., A. S.I., & H. D.WL. (Ed.), Proceedings of the World Congress on Engineering (Vol. 2, hal. 772–777). Newswood Limited. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041176064&partnerID=40&md5=43a807aacd06c3bb91d2fa355536d332
Zhu, J., Pan, Z., Wang, H., Huang, P., Sun, J., Qin, F., & Liu, Z. (2019). An improved multi-temporal and multi-feature tea plantation identification method using sentinel-2 imagery. Sensors (Switzerland), 19(9). https://doi.org/10.3390/s19092087
Refbacks
- There are currently no refbacks.