PENERAPAN ALGORITMA SPECTRAL ANGLE MAPPER (SAM) UNTUK KLASIFIKASI LAMUN MENGGUNAKAN CITRA SATELIT WORLDVIEW-2
Abstract
Remote sensing technology has been developed for monitoring and identification of coastal environment and resources, such as seagrasses. In Indonesia, particularly seagrass mapping spectrometer utilizing spectral library has not been done. This study aimed to determine the spectral signature based in situ measurement and image analysis, analyze the implementation of the algorithm Spectral Angle Mapper (SAM) and test accuracy in mapping seagrass to species level based on spectral libraries. Research conducted in seagrass Tunda Island, Banten. Satellite imagery used is WorldView-2 and the seagrass spectral reflectance was measured using a spectrometer USB4000. SAM classification algorithm utilizing spectral libraries and classify objects in a single pixel can be homogeneous. Classification results in the form of class Enhalus acoroides, Cymodocea rotundata, Thalassia hemprichii, and Halophila ovalis. The resulting accuracy of 35.6%. The area of each class is 0.8 hectares for the class Cymodocea rotundata, 2.79 hectares for Enhalus acoroides, class Thalassia hemprichii 3.7 hectares, and 3.5 hectares for Halophila ovalis. Classification of seagrass to species level yet produce good accuracy. Seagrass area with a variety of species and number of channels on a multispectral satellite image is assumed to be the cause of the low value of accuracy.
Â
Abstrak
Pemanfaatan teknologi satelit penginderaan jauh (remote sensing) sangat berkembang untuk identifikasi dan memantau sumberdaya alam wilayah pesisir, seperti lamun. Di Indonesia khususnya pemetaan lamun memanfaatkan pustaka spektral dari spektrometer belum banyak dilakukan. Penelitian ini bertujuan untuk mengetahui besaran spektral lamun berdasarkan pengukuran in situ dan analisis citra satelit, memetakan lamun hingga tingkat spesies berdasarkan pustaka spektral pengukuran in situ dengan penerapan algoritma SAM dan menguji tingkat akurasinya. Penelitian dilaksanakan di ekosistem lamun Pulau Tunda, Banten. Citra satelit yang digunakan adalah WorldView-2 dan reflektansi spektral lamun diukur menggunakan spektrometer USB4000. Algoritma klasifikasi SAM memanfaatkan pustaka spektral dan mengkelaskan obyek dalam satu piksel secara homogen. Hasil klasifikasi berupa kelas lamun Enhalus acoroides, Cymodocea rotundata, Thalassia Hemprichi, dan Halophila ovalis. Akurasi yang dihasilkan sebesar 35.6 %. Luas area masing-masing kelas adalah 0.8 Ha untuk kelas Cymodocea rotundata, 2.79 Ha untuk kelas Enhalus acoroides, 3,7 Ha kelas Thalassia hemprichii, dan 3.5 Ha untuk Halophila ovalis. Klasifikasi lamun hingga tingkat spesies belum menghasilkan akurasi yang baik. Area lamun dengan jenis yang beragam dan jumlah saluran pada citra satelit multispektral diasumsikan menjadi penyebab rendahnya nilai akurasi.
Keywords
Full Text:
PDFReferences
Azkab M. H., 2000. Struktur dan Fungsi pada Komunitas Lamun, Oseana, 3(25): 9-17.
Bortone S. A., 2000. Seagrasses: Monitoring, Ecology, Physiology, and Management. CRC Press.
Christon, Djunaedi O S, P P. N., 2012. Pengaruh Tinggi Pasang Surut Terhadap Pertumbuhan dan Biomassa Daun Lamun Enhalus Acoroides di Pulau Pari Kepulauan Seribu Jakarta, Jurnal Perikanan dan Kelautan, 3(3): 287-294.
Congalton R. G., Green K., 2008. Assessing the accuracy of remotely sensed data: Principles and practices. CRC press.
Danoedoro P., 2012. Pengantar Penginderaan Jauh Digital, Yogyakarta Andi Offset.
Durako M. J., 2007. Leaf Optical Properties and Photosynthetic Leaf Absorptances in Several Australian Seagrasses, Aquatic Botany, 87(1): 83-89.
Felde G. W., Anderson G. P., Cooley T. W., Matthew M. W., Adler-Golden S. M., Berk A., Lee J., 2003. Analysis of Hyperion Data with the Flaash Atmospheric Correction Algorithm, Pages 90-92. Geoscience and Remote Sensing Symposium, Proceedings : IEEE International.
Fyfe S. K., 2003. Spatial and Temporal Variation in Spectral Reflectance: are Seagrass Species Spectrally Distinct? Limnology and Oceanography, 48(1): 464-479.
Fyfe S. K., 2004. Hyperspectral Studies of new South Wales Seagrasses with Particular Emphasis on the Detection of Light Stress in Eelgrass Zostera Capricorni, University of Wollongong, Australia.
Globe D., 2009. The Benefits of the 8 Spectral Bands of Worldview-2, 12: White Paper.
Green E. P., Mumby P. J., Edwards A. J., Clark C. D., 2000. Remote Sensing Handbook for Tropical Coastal Management, France. UNESCO.
Helmi M., Hartoko A., Herkiki S., Munasik M., Wouthuyzen S., 2012. Analisis Respon Spektral dan Ekstraksi Nilai Spektral Terumbu Karang pada Citra Digital Multispektral Satelit Alos-Avnir di Perairan Gugus Pulau Pari, kepulauan seribu, jakarta, Buletin Oseanografi Marina. 1(120-136.
Indarto, 2014. Teori dan Praktek Penginderaan Jauh, Yogyakarta Andi Offset
Kamal M., Arjasakusuma S., 2010. Ekstraksi Informasi Penutup Lahan Menggunakan Spektrometer Lapangan Sebagai Masukan Endmember pada Data Hiperspektral Resolusi Sedang, Jurnal Ilmiah Geomatika Vol. 16(2).
Kamal M., Phinn S., 2011. Hyperspectral Data for Mangrove Species Mapping: a Comparison of Pixel-Based and Object-Based Approach, Remote Sensing. 3(10): 2222-2242.
Kiswara W., 2010. Studi Pendahuluan: Potensi Padang Lamun Sebagai Karbon Rosot dan Penyerap Karbon di Pulau Pari, teluk Jakarta, LIPI, 36(3): 361-376.
Kutser T., Miller I., Jupp D. L., 2006. Mapping Coral Reef Benthic Substrates using Hyperspectral Space-Borne Images and Spectral Libraries, Estuarine, Coastal and Shelf Science, 70(3): 449-460.
Lillesand T., Kiefer R. W., Chipman J., 2004. Remote Sensing and Image Interpretation, United States of America John Wiley & Sons.
Lyons M., Phinn S., Roelfsema C., 2011. Integrating Quickbird Multi-Spectral Satellite and Field Data: Mapping Bathymetry, Seagrass Cover, Seagrass Species and Change in Moreton Bay, Australia in 2004 and 2007, Remote Sensing. 3(1): 42-64.
MartÃnez P. J., Pérez R. M., Plaza A., Aguilar P. L., Cantero M. C., Plaza J., 2006. Endmember Extraction Algorithms from Hyperspectral Images.
Myint S. W., Gober P., Brazel A., Grossman-Clarke S., Weng Q., 2011. Per-Pixel Vs. Object-Based Classification of Urban Land Cover Extraction using High Spatial Resolution Imagery, Remote Sensing of Environment, 115(5): 1145-1161.
Optic O., 2009. Spectra Suite Spectrometer Operating Software, Uniited State of America Inc. World Headquarters.
Poedjirahajoe E., Mahayani N. P. D., Sidharta B. R., Salamuddin M., 2013. Tutupan Lamun dan Kondisi Ekosistemnya di Kawasan Pesisir Madasanger, Jelenga, dan Maluk Kabupaten Sumbawa Barat, Seagress Coverage and Ecosystem Condition at the Coastal Area of Madasanger, Jelenga and Maluk, West Sumbawa, Jurnal Ilmu dan Teknologi Kelautan Tropis, 5(1): 37.
Pu R., Bell S., Baggett L., Meyer C., Zhao Y., 2012. Discrimination of Seagrass Species and Cover Classes with in Situ Hyperspectral Data, Journal of Coastal Research, 28(6): 1330-1344.
Rashmi S., Addamani S., Venkat S., 2014. Spectral Angle Mapper Algorithm for Remote Sensing Image Classification, IJISET–International Journal of Innovative Science, Engineering & Technology, 50(4): 201-205.
Tamondong A. M., Blanco A. C., Fortes M. D., Nadaoka K., 2013. Mapping of Seagrass and Other Benthic Habitats in Bolinao, Pangasinan using Worldview-2 Satellite Image, 1579-1582, Geoscience and Remote Sensing Symposium (IGARSS): IEEE International.
Refbacks
- There are currently no refbacks.