METODE DUAL KANAL UNTUK ESTIMASI KEDALAMAN DI PERAIRAN DANGKAL MENGGUNAKAN DATA SPOT 6 STUDI KASUS : TELUK LAMPUNG (DUAL BAND METHOD FOR BATHYMETRY ESTIMATION IN SHALLOW WATERS DEPTH USING SPOT 6 DATA CASE STUDY: LAMPUNG BAY)
Abstract
Depth data can be used to produce seabed profile, oceanography, biology, and sea level rise. Remote sensing technology can be used to estimate the depth of shallow marine waters characterized by the ability of light to penetrate water bodies. One image that can estimate the depth is SPOT 6 which has three visible canals and one NIR channel with 6 meter spatial resolution. This study used SPOT 6 image on March 22, 2015. The image was first being  dark pixel atmospheric corrected by making 30 polygons. The originality of this method was to build a correlation between the dark pixel value of red and green channels with the depth of the field measurement results, made on June 3 to 9, 2015. The algorithm derived experimentally consisted of: thresholding which served to separate the land by the sea and the correlation function. The correlation function was obtained: first correlating the observation value with each band, then calculating the difference of minimum pixel darkness value and minimum for red and green channel was 0.056 and 0.0692. The model was then constructed by using the comparison proportions, so that the linear equations were obtained in two channels: Z (X1, X2) = 406.26 X1 + 327.21 X2 - 28.48. Depth estimation results were for a 5-meter scale, the most efficient estimation with the smallest error relative mean occured in shallow water depth from 20 to 25 meters, while the result of   10 meters scale from 20 to 30 meters and the estimated depth hadsimilar patterns or could be said close to reality. This method was able to detect sea depths up to 25 meters and had a small RMS error of 0.653246 meters. Thus the two-channel method coukd offer a fast, flexible, efficient, and economical solution to map topography of the ocean floor.
Abstrak
Data kedalaman dapat digunakan untuk menghasilkan profil dasar laut, oseanografi, biologi, dan kenaikan muka air laut. Teknologi penginderaan jauh dapat digunakan untuk mengestimasi kedalaman perairan laut dangkal yang ditandai dengan kemampuan cahaya untuk menembus badan air. Salah satu citra yang mampu mengestimasi kedalaman tersebut adalah SPOT 6 yang memiliki tiga kanal visible dan satu kanal NIR dengan resolusi spasial 6 meter. Pada penelitian ini, Citra SPOT-6 yang digunakan adalah 22 Maret 2015. Citra terlebih dahulu dilakukan koreksi atmosferik dark pixel dengan membuat 30 poligon. Originalitas dari metode ini adalah membangun suatu korelasi antara nilai dark pixel kanal merah dan hijau dengan nilai kedalaman hasil pengukuran lapangan yang dilakukan pada 3 sampai dengan 9 Juni 2015. Algoritma diturunkan secara eksperimen yang terdiri dari thresholding yang berfungsi untuk memisahkan daratan dengan lautan dan fungsi korelasi. Fungsi korelasi diperoleh pertama-tama mengkorelasikan nilai pengamatan dengan masing-masing band, kemudian menghitung selisih nilai dark pixel maksimum dan minimum untuk kanal merah dan hijau yaitu 0,056 dan 0,0692. Selanjutnya, dibangun model dengan menggunakan dalil perbandingan sehingga diperoleh persamaan linier dalam dua kanal yaitu: Z(X1,X2) = 406,26 X1 + 327,21 X2 – 28,48. Hasil estimasi kedalaman, untuk skala 5 meter, estimasi yang paling efisien dengan Mean relatif error terkecil terjadi pada kedalaman perairan dangkal dari 20 sampai dengan 25 meter, sedangkan untuk skala 10 meter dari 20 sampai dengan 30 meter dan juga hasil estimasi kedalaman yang diperoleh mempunyai pola kemiripan atau dapat dikatakan mendekati kenyataan. Metode ini mampu mendeteksi kedalaman laut hingga 25 meter dan mempunyai RMS error yang kecil yaitu 0,653246 meter. Dengan demikian, metode dua kanal ini dapat menawarkan solusi cepat, fleksibel, efisien, dan ekonomis untuk memetakan topografi dasar laut.
Keywords
Full Text:
PDFReferences
Arief M., 2012a. Aplikasi Data Satelit SPOT Untuk Pemetaan Kedalaman di Pesisir Selatan Malang. Jurnal Teknologi, Universitas Muhammadiyah, ISSN 2085-1669; 2010; Oktober, Vol.2 No. 2. 143 - 150.
Arief, M., 2012b. Pendekatan Baru Pemetaan Kedalaman Menggunakan Data Penginderaan Jauh SPOT : Studi Kasus Teluk Perigi dan Teluk Popoh. Jurnal Teknologi Dirgantara, Vol. 10 no.1 Juni 2012, ISSN 1412-8063, 71-80.
Arief, M.; Hartuti, M.; Asriningrum, W.; Parwati, E.; Budhiman, S.;, Prayogo, T.; Hamzah, R., 2013. Pengembangan Metode Pendugaan Kedalaman Perairan Dangkal Menggunakan Data Satelit SPOT-4: Studi Kasus: Teluk Ratai Kabupaten Pesawaran. Jurnal Penginderaan Jauh dan Pengolahan Citra Digital; ISSN- 1412-8098, Vol. 10, No.1.
Benny, A.H.; and Dawson G.J., 1983. Satellite Imagery as an Aid to Bathymetric Charting in the Red Sea, The Cartographic Journal, vol.20, 5-16.
Collet, C.; Provost J.-N. ; Rostaing, P.; Perez, P. and Bouthemy, P., 2000. SPOT Satellite Data Analysis for Bathymetric Mapping. Proceedings of the International Conference on Image Processing, 3, 464-467. http://dx.doi.org/10.1109/ icip.2000.899440.
Eugenio, F.; Marcello, J.; Martin, J., 2015. High-Resolution Maps of Bathymetry and Benthic Habitats in Shallow-Water Environments Using Multispectral Penginderaan jauh Imagery. IEEE Transactions on Geoscience and Penginderaan jauh, VOL. 53, NO. 7.
Finkl C.; Benedet L.; dan Andrews J., 2005. Interpretation of Seabed Geomorphology Based on Spatial Analysis of High-Density Airborne Laser Bathymetry. Journal of Coastal Research, vol. 21, 501–514.
Gao, J., 2009. Bathymetric Mapping by Means of Penginderaan Jauh: Methods, Accuracy and Limitations. Progress in Physical Geography, vol. 33, no.1, 103–116.
Green, E.; Edward, A.; Mumby, P., 2000. Mapping Batymetriy in Penginderaan Jauh Handbook for Tropical Coastal Management. Coastal Manangement Sourcebok 3, UNESCO Paris, 219-233.
Jupp, D. L. B., 1989. Background and Extension to Depth of Penetration (DOP) Mapping in Shallow Coastal Waters. Proceedings of symposium on penginderaan jauh of coastal zone, Gold Coast, Queensland, IV 2 (1) - IV 2 (19).
Khondoker, I.S., and Siddiquee, H.Z, 2016. Deriving River Bathymetry Using Space Borne Penginderaan jauh Techniques In Bangladesh. IOSR Journal of Engineering (IOSRJEN), ISSN (e): 225-3021, ISSN: 2278-8719, Vol. 6, 45-51.
Legleiter, C.J.; Tedesco, M.; Smith, L.C.; Behar, A.E. and Overstreet, B.T., 2014. Mapping The Bathymetry of Supraglacial Lakes and Streams on the Greenland Ice Sheet Using Field Measurements and High-Resolutionsatellite Images. The Cryosphere, 8, doi:10.5194/tc-8-215-2014, 215 – 228.
Liu S.; Zhang J. and Ma M., 2010. Bathymetric Ability of SPOT-5 Multi-spectral Image in Shallow Coastal Water, 2010, 18th International Conference on Geoinformatics, Beijing, 2010, 1-5. doi: 10.1109/GEOINFORMATICS.2010.5567951).
Lyzenga, D. R., 1978. Passive Penginderaan jauh Techniques for Mapping Water Depth and Bottom Features. Applied Optics, 17 (3), 379-383.
Lyzenga, D. R., 1979. Shallow-Water Reflectance Modeling With Applications to Penginderaan Jauh of Ocean Floor. Proceeding of 13th International Symposium on Penginderaan jauh of Environment, 583-602.
Maritorena, S.; Morel, A.; and Gentili, B., 1994. Diffuse-Reflectance of Oceanic Shallow Waters – Influence of Water Depth and Bottom Albedo, Limnol. Oceanography, 39, 1689–1703.
Mohamed H.; Negm A.; Zahran M.; dan Saavedra C.O., 2016. Bathymetry Determination from High Resolution Satellite Imagery Using Ensemble Learning Algorithms in Shallow Lakes: Case Study El-Burullus Lake. International Journal of Environmental Science and Development, Vol.7, No.4.
Monteys, X.; Harris, P.; Caloca, S. and Cahalane C., 2015. Spatial prediction of coastal bathymetry based on multispectral satellite imagery and multibeam data. Penginderaan jauh Vol. 7, 13782-13806; doi:10.3390/rs71013782.
Pattanaik, A.; Sahu, K.; Bhutiyani, M.R., 2015. Estimation of Shallow Water Bathymetry Using IRS-Multispectral Imagery of Odisha Coast, India International Conference on Water Resources, Coastal And Ocean Engine. (ICWRCOE 2015) ELSEVIER, Vol.4, 173-181.
Philpot, W.D., 1989. Bathymetry Mapping with Passive Multispectral Imagery. Applied Optics. 28, 1569–1578.
Prayuda B., 2014, Panduan Teknis Pemetaan Habitat Dasar Perairan Laut Dangkal, Pemetaan Habitat Dasar Perairan Laut Dangkal Pusat Penelitian Oseanografi Lembaga Ilmu Pengetahuan Indonesia,CRITC COREMAP II LIPI.
Stumpf, R.P.; Holderied, K.; Sinclair, M., 2003. Determination of Water Depth With High Resolution Satellite Imagery over Variable Bottom Types. Limonology Oceanography. 48, 547556. doi:10.4319/lo.2003.48. 1_part_2.0547.
Su, H.; Liu H.; Heyman, W., 2008. Automated Derivation of Bathymetric Information from Multi Spectral Satellite Imagery Using a Non Linear Inversion Model. Marine Geodesy. vol.31, pp. 281-298. doi:10.1080/01490410802466652.
Refbacks
- There are currently no refbacks.