PERBANDINGAN METODE KLASIFIKASI PENUTUP LAHAN BERBASIS PIKSEL DAN BERBASIS OBYEK MENGGUNAKAN DATA PiSAR-L2 (COMPARISON BETWEEN PIXEL-BASED AND OBJECT-BASED METHODS FOR LAND COVER CLASSIFICATION USING PiSAR-L2 DATA)

Johannes Manalu, Ahmad Sutanto, Bambang Trisakti

Abstract

PiSAR-L2 program is an experimental program for PALSAR-2 sensor installed on ALOS-2. Research collaboration had been conducted between the Japan Aerospace Exploration Agency (JAXA) and Ministry for Research and Technology of Indonesia in 2012 to assess the ability of PiSAR-L2 data for some applications. This paper explores the utilization of PiSAR-L2 data for land cover classification in forest area using pixel-based and object-based methods, then carried out comparison between the two methods. PiSAR-L2 data full polarization with 2.1 level for Riau province was used. Field data conducted by JAXA team and landcover map from WWF were used as references to collect input and evaluation sample. Pre-processing was done by doing backscatter conversion and filtering, then classification was conducted and it`s accuracy was tested. Two methods were used, 1) Maximum Likelihood Enhance Neighbor classifier for pixel-based and 2) Support Vector Machine for object based classification. The effect of spatial resolution on classification result was also analyzed. The results show that pixel-based produced mixed pixels "salt and pepper", the classification accuracies were 62% for 2.5 m and 83% for 10 m spatial resolution. While the object-based has some advantages: high homogeneity (absence of mixed pixels), clear and sharp boundary among classes, and high accuracy (97% for 10 m spatial resolution), although it was still found errors in some classes.

 

ABSTRAK

Program Polarimetric Interferometric Airborne Synthetic Aperture Radar of L-band version 2 (PiSAR-L2) adalah program eksperimen sensor Phased-Array Synthetic Aperture RADAR-2 (PALSAR-2) yang dipasang pada satelit Advanced Land Observing Satellite-2 (ALOS-2). Kerjasama riset telah dilakukan antara JAXA dan Kementerian Riset dan Teknologi pada 2012 untuk mengkaji kemampuan data PiSAR L-2 yang direkam menggunakan pesawat untuk beberapa aplikasi. Kegiatan ini menggunakan data PiSAR L-2 untuk klasifikasi penutup lahan di wilayah hutan dengan metode klasifikasi berbasis piksel dan berbasis obyek, kemudian membandingkan kedua metode tersebut. Data yang digunakan adalah data PiSAR L-2 polarisasi penuh dengan level 2.1 untuk wilayah Provinsi Riau. Data lapangan diperoleh dari survei lapangan tim JAXA dan peta penutup lahan dari World Wildlife Fund dijadikan sebagai referensi untuk sampel masukan dan pengujian. Pengolahan awal melakukan konversi backscatter dan filtering, kemudian melakukan klasifikasi dan uji akurasi. Dua metode klasifikasi yang digunakan, 1) Metode Maximum Likelihood Enhance Neighbor classifier untuk klasifikasi berbasis piksel dan 2) Metode Support Vector Machine untuk klasifikasi berbasis obyek. Pada kegiatan ini dilakukan analisis pengaruh resolusi spasial terhadap hasil klasifikasi. Hasil memperlihatkan bahwa metode berbasis piksel mempunyai piksel bercampur “salt and pepperâ€, akurasi klasifikasi adalah 62% untuk spasial resolusi 2.5 m dan 83% untuk spasial resolusi 10 m. Sedangkan klasifikasi berbasis obyek mempunyai kelebihan dengan homogenitas obyek yang tinggi (tidak adanya piksel bercampur), batas antara kelas yang jelas dan tegas, serta akurasi yang tinggi (97% untuk resolusi spasial 10 m), walau masih ada kesalahan pada beberapa kelas penutup lahan.

Keywords

PiSAR-L2; Berbasis piksel; Berbasis obyek; Band tekstur; Pixel-based; Object-based; Texture band

Full Text:

PDF

References

eoPortal Directory https:// directtory.eoportal.

org/web/eoportal/satellite-missions/

a/alos-2.

JAXA, 2008. ALOS User Handbook. NDX070015,

EORC-JAXA.

JAXA, RISTEK, BPPT, 2012. JAXA-RISTEKBPPT-LAPAN-BIG

Joint Airborne

Synthetic Aperture Radar Campaign in

Indonesia for Forest Carbon Monitoring,

Ship Detection, Disaster Monitoring,

Geometric Evaluation, and Crop

Monitoring, JAXA/EORC.

Lehmann, E. A., Caccetta P.A., Zhou Z.S.,

McNeill S.J., Wu X., Mitchell A.L.,

Joint Processing of Landsat and

ALOS-PALSAR Data for Forest Mapping

and Monitoring, IEEE Transactions on

Geoscience and Remote Sensing, 50(1),

-67.

Li, H.T., Gu H.Y., Han Y.S., Yang J.H., 2008.

Object-oriented Classification of

Polarimetric SAR Imagery based on

Statistical Region Merging and Support

Vector Machine, International Workshop

on Earth Observation and Remote

Sensing Applications.

Lopez, A., Touzi, R., and Nezry, E., 1990.

Adaptive Speckle Filters and Scene

Heterogeneity, IEEE Transactions on

Geoscience and Remote Sensing, 28(6),

-100.

Noviar, H., dan Trisakti, B., 2013. Pemanfaatan

Kanal Polarisasi dan Kanal Tekstur

Data PiSAR-L2 Untuk Klasifikasi

Penutup Lahan Kawasan Hutan dengan

Metode Klasifikasi Terbimbing< Jurnal

Penginderaan Jauh, 10(1), 47-58.

Raimadoya, M.A., Trisasongko B.H., dan

Nurwadjedi, 2007. Eksplorasi Citra Radar

untuk Intelijen Ketahanan Pangan,

Departemen Ilmu Tanah dan

Sumberdaya Lahan. Institut Pertanian

Bogor.

Sambodo, K.A., Teguh K., dan Santoso H.,

Klasifikasi Data Polarimetrik

RADAR Dengan Menggunakan Metode

Dekomposisi Cloude and Pottier,

Prosiding MAPIN XIV, halaman 79-84,

Surabaya, Indonesia.

Sgrenzaroli, M., 2004. Tropical Forest Mapping

at Regional Scale using the GRFM SAR

mosaics over The Amazon in South

America, Ph.D. Thesis Wageningen

University.

Shimada, M., Isoguchi O., Tadono T., and Isono

K., 2009. PALSAR Radiometric and

Geometric Calibration, IEEE Transaction

on Geoscience and Remote Sensing

(12), 3915-3931.

Shimada, M., Kawano N., Watanabe M.,

Motohka T., and Ohki M., 2012.

Calibration and Validation of the PiSARL2,

In: Proceeding of 53rd Autumn

Conference of the Remote Sensing

Society of Japan 37-38.

Shimada, M., Watanabe M., Motohka T.,

Shiraishi T., Thapa R.B., Kawano N.,

Uttank A., Sadly M., and Rahman A.,

Final Report on Japan-Indonesia

PiSAR-L2 Campaign “Japan-Indonesia

PiSAR-L2 Campaign 2012â€, JAXARISTEK-BPPT.

Shimada, M., Watanabe M., Motooka T.,

Shiraishi T., Thapa R., Kawano N.,

Ohki M., Uttank A., Sadly M., and

Rahman A., 2013. Japan - Indonesia PiSar-L2

Campaign 2012, Proceedings of

th. Asian Conference on Remote

Sensing (ACRS 2013), Bali Indonesia.

Sutanto, A., Trisakti B., dan Arimurthy A.M.,

Perbandingan Klasifikasi Berbasis

Obyek dan Klasifikasi Berbasis Piksel

pada Data Citra Satelit Synthetic

Aperture Radar untuk Pemetaan Lahan.

Jurnal Penginderaan Jauh 11(1), 63-75.

Trisakti, B., dan Hamzah R., 2013. Utilization of

Multi Temporal SAR Data for Forest

Mapping Model Development,

International, Journal of Remote

Sensing and Earth Sciences, 10(1), 65-74.

Watanabe, M., Motohka T, Shiraishi T., Thapa

R.B., Kawano N., and Shimada M.,

Correlation between Forest

Biomass and Full Polarimetric

Parameters Derived from PiSAR-L2 Data

for a Site in Riau, Indonesia. In:

Proceedings of 34th Asian Conference

on Remote Sensing (ACRS 2013), Bali

Indonesia.

Refbacks

  • There are currently no refbacks.