PERANCANGAN SISTEM MONITORING CLOUD COVER UNTUK PEMANTAUAN DAN PREDIKSI CLOUD COVER MENGGUNAKAN METODE DBMS DAN LSTM

Yohanes Fridolin Hestrio

Abstract

Kualitas data citra satelit optik yang diperoleh Pusat Penginderaan Jauh dan Teknologi Data dipengaruhi oleh kondisi cuaca dan tutupan awan. Berdasarkan kondisi tersebut maka data citra satelit yang diperoleh dibagi menjadi 3 kategori (mendung, setengah mendung, awan cerah) berdasarkan data tahunan jumlah data mendung lebih besar dari jumlah data bersih. Sehingga diperlukan suatu sistem yang dapat memantau besarnya tutupan dari hasil akuisisi data citra satelit dan juga dapat memprediksi tutupan awan dimasa yang akan datang sehingga dapat menjadi acuan dalam melakukan akuisisi citra satelit. Melalui penelitian dan pengembangan sistem pemantauan tutupan awan ini, baik pengguna maupun petugas akuisisi dapat memantau tutupan awan hasil akuisisi dan juga dapat menentukan lokasi pengambilan gambar yang bersih dan tanpa awan dengan data prediktif. Metode yang digunakan untuk pemantauan pengembangan sistem menggunakan DBMS (Database Management System), sedangkan untuk penelitian prediktif tutupan awan pada suatu wilayah menggunakan metode LSTM (Long short-term memory) untuk Time Series Forecasting. Hasil penelitian dan pengembangan ini berupa sistem pemantauan yang dapat memantau hasil akuisisi dengan prinsip pengelolaan data dan dapat memprediksi kondisi tutupan awan dari data pemantauan tutupan awan.

Keywords

Pemantauan, Prediksi, Tutupan Awan

Full Text:

PDF

References

M. Soleh, A. S. Nasution, A. Hidayat, H. Gunawan, and A. Widipaminto, “Analysis of Antenna Specification for Very High Resolution Satellite Data Acquisition Through Direct Receiving System (Drs),†Int. J. Remote Sens. Earth Sci., vol. 15, no. 2, p. 113, 2019, doi: 10.30536/j.ijreses.2018.v15.a2799.

A. Hidayat, A. Suprijanto, P. R. Ramadhan, and S. T. A. Munawar, “Kajian Kebutuhan Spesifikasi Antena untuk Penerimaan Data Resolusi Sangat Tinggi Study of Antenna Specification Requirements for Very High Resolution Data Reception,†2017, pp. 117–124.

J. P. Gastellu-Etchegorry, “Monthly Probabilities For Acquiring Remote Sensed Data of Indonesia with Cloud Cover Less than 10, 20 and 30 Percent,†Indones. J. Geogr., vol. 18, no. 55, pp. 11–28, 1988.

O. Roswintiarti, R. Dewanti, S. Furby, and J. Wallace, “The Remote Sensing Monitoring Program of Indonesia‟s National Carbon Accounting System: Methodology and Products†Jakarta, 2014.

Presiden Republik Indonesia, Undang-undang Republik Indonesia Nomor 21 Tahun 2013 tentang Keantariksaan (in Bahasa), no. 1. 2013.

ANSI/X3/SPARC 1975 Study Group on Data Base Management Systems FDT Bulletin of ACM SIGMOD 7(2)

Navathe S B 1992 Evolution of Data Modeling for Databases Communications of the ACM 35(9) 112–123

Kim Y G 1995 Comparing Data Modeling Formalisms Communications of the ACM 38(6) 103– 115

F. Chollet et al., “Keras,†https://keras.io, 2015.

K. Chen, Y. Zhou, and F. Dai, “A LSTM-based method for stock returns prediction: A case study of China stock market,†in Proceedings of the International Conference on Big Data. IEEE, 2015, pp. 2823–2824.

R. Fu, Z. Zhang, and L. Li, “Using LSTM and GRU neural network methods for traffic flow prediction,†in Proceeding of the Youth Academic Annual Conference of Chinese Association of Automation. IEEE, 2016, pp. 324–328.

L. Yunpeng, H. Di, B. Junpeng, and Q. Yong, “Multi-step ahead time series forecasting for different data patterns based on LSTM recurrent neural network,†in Proceedings of the 14th Web Information Systems and Applications Conference. IEEE, 2017, pp. 305–310.

K. Greff, R. Srivastava, J. Koutn´ık, B. Steunebrink, and J. Schmidhuber, “LSTM: A search space odyssey,†IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, 2016.

F. Karim, S. Majumdar, H. Darabi, and S. Chen, “Lstm fully convolutional networks for time series classification,†IEEE access, vol. 6, pp. 1662–1669, 2017.

M. Husken and P. Stagge, “Recurrent neural networks for ¨ time series classification,†Neurocomputing, vol. 50, pp. 223– 235, 2003.

S. Smyl, J. Ranganathan, and A. Pasqua, “M4 forecasting competition: Introducing a new hybrid ES-RNN model,†June 2020, https://eng.uber.com/m4-forecasting-competition/.

Bouktif, Salah, Ali Fiaz, Ali Ouni, and Mohamed Adel Serhani. (2018) “Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches.†Energies 11 (7): 1636.

Greff, Klaus, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, and Jürgen Schmidhuber. (2017) “LSTM: A Search Space Odyssey.†IEEE Transactions on Neural Networks and Learning Systems 28 (10): 2222 - 2232.

Karmiani, D., R. Kazi, A. Nambisan, A. Shah, and V. Kamble. (2019) “Comparison of Predictive Algorithms: Backpropagation, SVM, LSTM and Kalman Filter for Stock Market.†Amity International Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates: 228-234.

Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent neural networks for multivariate time series with missing values,†Sci. Rep., vol. 8, no. 1, pp. 1–12, 2018.

L. Giles, S. Lawrence, and A. C. Tsoi, “Noisy time series prediction using recurrent neural networks and grammatical inference,†Mach., vol. 44, no. 1, pp. 161–183, 2001.

A. Graves, M. Liwicki, H. Bunke, J. Schmidhuber, and S. Fernandez, “Unconstrained on-line handwriting recognition ´ with recurrent neural networks,†in Advances in Neural Information Processing Systems, 2008, pp. 577–584.

A. Graves and J. Schmidhuber, “Offline handwriting recognition with multidimensional recurrent neural networks,†in Advances in Neural Information Processing Systems, 2009, pp. 545–552.

A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,†in Proceedings of the International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013, pp. 6645–6649.

A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent neural networks,†in Proceedings of the International Conference on Machine Learning, 2014, pp. 1764–1772

Refbacks

  • There are currently no refbacks.