RELASI APROKSIMASI ANTARA DIAMETER KAWAH TUMBUKAN DI BUMI DAN UKURAN OBJEK PENUMBUK DARI SIMULASI NUMERIK

Judhistira Aria Utama

Abstract

Di permukaan Bulan dan planet-planet terestrial dapat dijumpai kawah-kawah hasil tumbukan benda-benda angkasa. Studi ini mencoba memperoleh relasi aproksimasi antara diameter kawah tumbukan di Bumi terhadap ukuran objek yang diperlukan untuk membentuk kawah tersebut. Studi dilakukan menggunakan simulasi numerik terhadap ribuan sampel asteroid dekat-Bumi  nyata dalam orbit yang telah dikenal dengan baik. Menggunakan asumsi bahwa jumlah kawah yang dibentuk di permukaan Bumi sama dengan banyaknya asteroid dekat-Bumi yang menumbuk dalam kurun waktu tertentu, diperoleh bahwa diperlukan asteroid dengan diameter yang lebih kecil untuk menghasilkan kawah-kawah besar yang dikenal dibandingkan prediksi yang ada sebelumnya. Pengetahuan tentang ukuran fisik asteroid penumbuk dapat digunakan dalam mengestimasi besarnya energi tumbukan yang dihasilkan, yang berhubungan pula dengan strategi metode mitigasi yang diperlukan.

Full Text:

PDF Utama dkk

References

Bottke, W.F., Jedicke, R., Morbidelli, A., Petit, J.M., & Gladman, B. (2000). Understanding the distribution of near-Earth asteroids. Science, 288, 2190- 2194.

Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H.F., Michel, P., & Metcalfe, T.S. (2002). Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus, 156, 399-433.

Bottke, W.F., Vokrouhlický, D., Ghent, B., Mazrouei, S., Robbins, S., & Marchi, S. (2016). On asteroid impacts, crater scaling laws, and a proposed younger surface age for Venus. Division for Planetary Sciences Meeting Abstracts, 47, 1-2.

Brož, M. (2006). Yarkovsky effect and the dynamics of the Solar System (Doctoral dissertation). Charles University.

Dermawan, B., Hidayat, T., & Utama, J.A. (2013). Pengembangan integrator swift_rmvs4 dengan melibatkan efek termal. Prosiding Seminar HAI (Himpunan Astronomi Indonesia) 2013 – 90 Tahun Observatorium Bosscha, Lembang-Indonesia, 1 – 4.

Farinella, P., Froeschlé, Ch., Froeschlé, C., Gonczi, R., Hahn, G., Morbidelli, A., & Valsecchi, G.B. (1994). Asteroids falling onto the Sun. Nature, 371, 315-316.

Farnocchia, D., Chesley, S.R., Chodas, P.W., Micheli, M., Tholen, D.J., Milani, A., Elliott, G.T. & Bernardi, F. (2013). Yarkovsky-driven impact risk analysis for asteroid (99942) Apophis. Icarus, 224, 192-200.

Galad, A. (2005). On intrinsic collision probability of subkilometer asteroids with the Earth. Contrib. Astron. Obs. Skalnaté Pleso, 35, 65-75.

Gladman, B.J., Migliorini, F., Morbidelli, A., Zappalà , V., Michel, P., Cellino, A., Froeschlé, Ch., Levison, H., Bailey, M., & Duncan, M. (1997). Dynamical life-times of objects injected into asteroid belt resonances. Science, 277, 197-201.

Harris, N.W. & Hughes, D.W. (1994). Asteroid-Earth collision velocities. Planet. Space Sci., 42, 285-289.

Holsapple, K.A. (2007). Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61. Icarus, 187, 500-509.

Hughes, D.W. (2000). A new approach to the calculation of the cratering rate of the Earth over the last 125±20 Myr. Mon. Not. R. Astron. Soc., 317, 429-437.

Hughes, D.W. (2002). A comparison between terrestrial, Cytherean and lunar impact cratering records. Mon. Not. R. Astron. Soc., 334, 713-720.

Hughes, D.W. (2003). The approximate ratios between the diameters of terrestrial impact craters and the causative incident asteroids. Mon. Not. R. Astron. Soc., 338, 999-1003.

Hughes, D.W. & Harris, N.W. (1994). The distribution of asteroid sizes and its significance. Planet. Space Sci., 42, 291-295.

Hyland, D.C., Altwaijry, H.A., Ge, S., Margulieux, R., Doyle, J., Sandberg, J., Young, B., Bai, X., Lopez, J., & Satak, N. (2010). A permanently-acting nea mitigation technique via the Yarkovsky effect. Cosmic Research, 48(5), 430-436.

Kryszczyñska, A., La Spina, A., Paolicchi, P., Harris, A.W., Breiter, S. & Pravec, P. (2007). New ï¬ndings on asteroid spin-vector distributions. Icarus, 192, 223-237.

Levison, H.F. & Duncan, M.J. (1994). The long-term dynamical behavior of short-period comets. Icarus, 108, 18-36.

Michel, P. (2013). Physical properties of near-Earth objects that inform mitigation. Acta Astronautica, 90, 6-13.

Morbidelli, A. & Gladman, B. (1998). Orbital and temporal distributions of meterorites originating in the asteroid belt. Meteorit. Planet. Sci., 33, 999–1016.

Morbidelli, A., Jedicke, R., Bottke, W.F., Michel, P., & Tedesco, E.F. (2002). From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard. Icarus, 158, 329–342.

Morbidelli, A. & Vokrouhlický, D. (2003). The Yarkovsky-driven origin of near-Earth asteroids. Icarus, 163, 120-134.

Sears, D.W. (1978). The nature and origon of meteorites. Bristol, Adam Hilger.

Usui, F., Kasuga, T., Hasegawa, S., Ishiguro, M., Kuroda, D., Müller, T.G., Ootsubo, T., & Matsuhara, H. (2013). Albedo properties of main belt asteroids based on the all-sky survey of the infrared astronomical satellite Akari. Astrophys. J., 762:56, 1-14.

Zappalà , Z., Farinella, P., Knezavic, Z., & Paolicchi, P. (1984).

Collisional origin of the asteroid families - mass and velocity distributions. Icarus, 59, 261-285.

Refbacks

  • There are currently no refbacks.