PROBABILITAS LONTARAN MASSA KORONA BERDASARKAN PARAMETER MEDAN MAGNET UNIVARIAT

Rhorom Priyatikanto, Emanuel Sungging Mumpuni, Tiar Dani, Farahhati Mumtahana, Nana Suryana

Abstract

Forecasting of flare occurrence and coronal mass ejection (CME) are necessary since those energetic phenomena are able to effectively influence the space weather on Earth. In this study, we analyzed four magnetic parameters of active region: (1) mean gradient of horizontal magnetic field (meangbh), (2) mean helicity (meanjzh), (3) mean photospheric magnetic free energy (meanpot) and (4) mean gradient of total field (meangbt) and their potential usage for the input in CME prediction based on linear statistics. Obtained that among those four parameters, meangbt is the best parameter for the purpose mentioned. Active regions with meanbgt ≤ 96 Gauss/Mm probably produce flare with CME and the True Skill Score from this prediction is ~20%. Eventhough this achieved score is considerably low, it is proportionally comparable with respect to the other work.

 

Prediksi flare dan lontaran massa korona (coronal mass ejection, CME) perlu dilakukan mengingat kedua peristiwa energetik tersebut dapat mempengaruhi cuaca antariksa di Bumi secara efektif. Pada studi kali ini, kami menganalisis empat parameter magnetik daerah aktif: (1) rerata gradien medan horisontal (meangbh), (2) rerata arus puntir (meanjzh), (3) rerata gradien medan magnet total (meangbt), dan (4) rerata energi magnetik bebas fotosfer (meanpot) serta potensinya untuk sebagai input dalam prediksi CME berbasis statistik linier. Hasilnya, diantara keempat parameter tersebut, meangbt merupakan parameter terbaik untuk keperluan tersebut. Daerah aktif dengan meangbt ≤ 96 Gauss/Mm berpotensi menghasilkan flare yang disertai CME dan True Skill Score dari prediksi ini adalah ~20%. Meski masih tergolong rendah, skor yang didapatkan dapat disandingkan secara proporsional dengan pekerja oleh peneliti lain.

Keywords

lontaran massa korona, probabilitas statistik, parameter statistik, daerah aktif

Full Text:

PDF

References

Balaguer-Núñez, L., Galadí-Enríquez, D., & Jordi, C. (2007). uvby - Hβ CCD photometry and membership segregation of the open cluster NGC 2682 (M 67). Astronomy and Astrophysics, 470, 585.

Bewsher, D., Harrison, R. A., & Brown, D. S. (2008). The relationship between EUV dimming and coronal mass ejections. I. Statistical study and probability model. Astronomy and Astrophysics, 478, 897.

Bobra, M. G., & Couvidat, S. (2015). Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-learning Algorithm. The Astrophysical Journal, 798, 135.

Bobra, M. G., & Ilonidis, S. (2016). Predicting Coronal Mass Ejections Using Machine Learning Methods. The Astrophysical Journal, 821, 127.

Bobra, M. G., Sun, X., Hoeksema, J. T., Turmon, M., Liu, Y., Hayashi, K., . . . Leka, K. D. (2014). The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches. Solar Physics, 289, 3549.

Chen, F. P. (2011). Coronal Mass Ejection: Models and Their Observational Basis. Living Review in Solar Physics, 8, 1.

Crown, M. D. (2012). Validation of the NOAA Space Weather Prediction Center's solar flare forecasting look-up table and forecaster-issued probabilities. Space Weather, 10, S06006.

Devos, A., Verbeeck, C., & Robbrecht, E. (2014). Verification of space weather forecasting at the Regional Warning Center in Belgium. Journal of Space Weather and Space Climate, 4, 29.

Gopalswamy, N. Y. (2008). Coronal Mass Ejections, Type II Radio Bursts, and Solar Energetic Particle Events in the SOHO Era. Annales Geophysicae, 26, 3033-3047.

Kraaikamp, E., & Verbeeck, C. (2015). Solar Demon - an approach to detecting flares, dimmings, and EUV waves on SDO/AIA images. Journal of Space Weather and Space Climate, 5, 18.

Priyatikanto, R., & Arifyanto, M. I. (2015). The implementation of binned Kernel density estimation to determine open clusters' proper motions: validation of the method. Astrophysics and Space Science, 355, 161.

Qahwaji, R., Colak, T., Al-Omari, M., & Ipson, S. (2008). Automated Prediction of CMEs Using Machine Learning of CME - Flare Associations. Solar Physics, 248, 471.

Sheather, S. J. (2004). Density estimation. Statistical Science, 19, 588.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall.

Welsch, B. T., Li, Y., Schuck, P. W., & Fisher, G. H. (2009). What is the Relationship Between Photospheric Flow Fields and Solar Flares? The Astrophysical Journal, 705, 821.

Refbacks

  • There are currently no refbacks.