RELIABILITAS FREKUENSI KRITIS DAN KETINGGIAN LAPISAN IONOSFER HASIL SCALING OTOMATIS MENGGUNAKAN SISTEM PINTAR ESIR-CADI

Jiyo M. Si.

Abstract

Scaling adalah metode untuk membaca dan menginterpretasikan nilai parameter ionosfer dari ionogram yang diperoleh melalui pengamatan menggunakan ionosonda. Metode ini mengacu kepada Report UAG-23A yang telah digunakan sebagai rujukan baku secara internasional. Pada awalnya, scaling dilakukan secara manual oleh teknisi yang terlatih. Namun, seiring dengan perkembangan teknologi pemrograman, scaling dapat dilakukan secara otomatis menggunakan sistem pintar atau software. Salah satu software tersebut adalah The Expert System Ionogram Reduction (ESIR) yang telah beroperasi secara otomatis bersamaan dengan beroperasinya ionosoda CADI (Canadian Advanced Digital Ionosonde) di stasiun Kupang-Undana (10,16ºLS, 123,67ºBT) dan Manado-Tomohon (1,48ºLU,  124,85ºBT). Hasil scaling otomatis menggunakan ESIR-CADI diantaranya berupa frekuensi kritis lapisan ionosfer (foE, foF1, dan foF2) dan ketinggiannya (h’E, h’F, dan h’F2). Dalam makalah ini kami membandingkan parameter-parameter tersebut dengan parameter yang sama hasil scaling secara manual. Data yang digunakan merupakan hasil pengamatan di dua stasiun tersebut pada saat puncak siklus aktivitas matahari 2013 - 2015. Tujuannya untuk mengetahui reliabilitas frekuensi kritis dan ketinggian hasil scaling menggunakan ESIR-CADI. Hasil riset menunjukkan bahwa nilai individual dan median foE dan foF2, yang dihasilkan ESIR-CADI di stasiun Kupang-Undana dan Manado-Tomohon semuanya reliabel, sedangkan foF1 dan h’E tidak. Nilai individual dan median h’F2 yang reliabel hanya hasil scaling ESIR-CADI di stasiun Kupang-Undana, sedangkan untuk stasiun Manado-Tomohon hanya nilai mediannya saja. Parameter h’F yang reliabel hanya nilai median hasil scaling ESIR-CADI di Stasiun Kupang-Undana. Dengan demikian nilai foE dan foF2 hasil scaling ESIR-CADI dapat digunakan untuk mengevaluasi kondisi ionosfer pada sistem layanan SWIFtS, sedangkan h’F2 yang dapat digunakan hanya hasil ESIR-CADI Kupang-Undana.

Keywords

Scaling, frekuensi kritis, ketinggian ionosfer, nilai median, nilai individual, reliabilitas.

Full Text:

PDF

References

Ding, Z. H., Ning, B. Q., Wan, W. X., dan Liu, L. B., (2007), Automatic scaling of F2-layer parameters from ionograms based on the empirical orthogonal function (EOF) analysis of ionospheric electron density, Earth Planets Space, 59, 51–58, 2007

Enell, C. F., Kozlovsky, A., Turunen, T., Ulich, T., Välitalo, S., Scotto, C., and Pezzopane, M., (2016), Comparison between manual scaling and Autoscala automatic scaling applied to Sodankylä Geophysical Observatory ionograms, Geosci. Instrum. Method. Data Syst., 5, 53–64, 2016 www.geosci-instrum-method-data-syst.net/5/53/2016/ doi:10.5194/gi-5-53-2016.

Filawati, S., Jiyo, dan Mende, C., (2015), Analisis Kerapatan Elektron dan Ketinggian Maksimum Lapisan Ionosfer di Atas Manado, Prosiding Workshop Riset Cuaca Antariksa dan Peluang Pemanfaatannya, Manado, 20 Oktober 2015.

Galkin, I.A., B.W. Reinisch, G.A. Ososkov, E.G. Zaznobina, and S.P. Neshyba, (1996). S.P. Feedback neural networks for ARTIST ionogram processing, Radio Science, 31, 1119-1129.

Hunsucker, R. D., Hargreaves, J. K., (2003), The High-Latitude Ionosphere and Its Effects on Radio Propagations, Cambridge University Press, halaman 26 – 39.

Ippolito, A., Altadill, D., Carlo Scotto, C., Blanch, E., (2018), Oblique Ionograms Automatic Scaling Algorithm OIASA application to the ionograms recorded by Ebro observatory ionosonde, J. Space Weather Space Clim. 2018, 8, A10, https://doi.org/10.1051/swsc/2017042

Jiyo, (2015), Analisis Kemampuan Sistem Pintar ESIR-CADI Untuk Mendukung Riset dan Layanan Informasi Ionosfer, Majalah Sains dan Teknologi Dirgantara, Vol. 10, No. 1, hal 23 - 32.

Jiyo, dan Mardiani, A. S., (2015), Distribusi Kejadian Equatorial Spread F di Atas Stasiun Pengamatan Ionosfer Manado-Tomohon Berdasarkan Data Pengamatan ESIR-CADI, Prosiding Workshop Riset Cuaca Antariksa dan Peluang Pemanfaatannya, Manado, 20 Oktober 2015.

Pezzopane, M., and Scotto, C., (2008), A method for automatic scaling of F1 critical frequencies from ionograms, Radio Science, Vol. 43, RS2S91, doi:10.1029/2007RS003723.

Piggott, W., R., dan Rawer, K., (1978), URSI Handbook of Ionogram Interpretation and Reduction, World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, Colorado.

Pillat, V. G., GuimarãEs, L. N. F., Fagundes , P. R., Da Silva, J. D. S., (2013), A computational tool for ionosonde CADI's ionogram analysis, Journal Computers & Geosciences archive, Volume 52, March, 2013, Pages 372-378, ISSN: 0098-3004 doi 10.1016/j.cageo.2012.11.009.

Rishbeth, H., Garriott, O. K., (1969), Introduction to Ionospheric Physics, Acdemic Press, Inc., New York, halaman 160-189.

Redding, N. J., (1996), The autoscaling of oblique ionograms, Technical Report DSTO–RR–0074, DSTO Electronics and Surveillance Research Laboratory PO Box 1500 Salisbury, South Australia, Australia 5108

Scotto, C., Macdougall, J., (2012), Application of Autoscala software to the Canadian Advanced Digital Ionosonde, International Journal of Remote Sensing, Volume 33, 2012 - Issue 17, Pages 5574-5582

Yaogai, H., Huan, S., Xianjian, Z., Zhengyu, Z., (2015). Real-Time Automatic Scaling Method of Oblique Ionogram Parameters Based on Morphological Operator and Inversion Technique, Wuhan University Journal of Natural Sciences 2015, Vol.20 No.4

Zheng, H., Ji, G., Wang, G., Zhao, Z., He, S., (2013). Automatic scaling of F layer from ionograms based on image processing and analysis, Journal of Atmospheric and Solar-Terrestrial Physics 105-106(2013)110–118

Refbacks

  • There are currently no refbacks.