ANALISIS ARUS LISTRIK DAN MEDAN MAGNET PADA DAERAH AKTIF PENGHASIL FLARE AR NOAA 12017

Johan Muhamad

Abstract

Flare Matahari terjadi akibat adanya pelepasan energi magnetik di suatu daerah aktif. Energi tersebut dihasilkan akibat adanya arus listrik yang mengalir di struktur korona daerah aktif. Pada daerah aktif penghasil flare, sistem arus listrik dan medan magnetnya terbentuk sedemikian rupa sehingga energi magnetiknya terakumulasi di daerah tertentu. Oleh karena itu, pemahaman akan karakteristik sistem kelistrikan dan kemagnetan daerah aktif penghasil flare sangat penting dikuasai agar prakiraan flare dapat dilakukan. Dengan menggunakan data medan magnet fotosfer dari Spaceweather HMI AR Patch (SHARP), kami melakukan analisis terhadap daerah aktif NOAA 12017 (AR 12017) yang menghasilkan banyak flare, termasuk flare kelas M dan X pada bulan Maret 2014. Kami menunjukkan bagaimana cara menurunkan parameter-parameter kelistrikan dan kemagnetan pada daerah aktif ini sepanjang periode flare tanggal 27-29 Maret 2014. Kami menemukan bahwa arus listrik vertikal pada daerah aktif ini menjadi semakin tidak netral menjelang terjadinya flare. Kami juga menemukan bahwa flare-flare terjadi pada awalnya di daerah dengan akumulasi energi yang tinggi, yakni di daerah dengan medan magnet yang tergeser dengan kuat akibat kemunculan fluks baru. Hasil ini menunjukkan bahwa daerah aktif AR 12017 dapat diidentifikasi sebagai penghasil flare, bahkan sebelum flare terjadi berdasarkan karaketeristik sistem arus dan konfigurasi medan magnetnya.

Keywords

flare Matahari, medan magnet, arus listrik

Full Text:

PDF

References

Alfven H., 1942. Existence of Electromagnetic – Hydrodynamic Waves, Nature, 150:405-406.

Alissandrakis C.E., 1981. On the computetaion of Constant  Force-Free Magnetic Field, Astronomy and Astrophysics, 100:197-200.

Aulanier G., Demoulin P., Schrijver C. J., et al., 2013. The Standard Flare Model in Three Dimensions II. Upper Limit on Solar Flare Energy, Astronomy and Astrophysics, 549(A66):7pp.

Bobra M.G., Sun X., Hoeksema J.T., et al., 2014. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs – Space Weather HMI Active Region Patches, Solar Physics, 289(9):3549-3578.

Bobra M.G., Couvidat S., 2015. Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data With a Machine Learning Program, Astrophysical Journal, 798(135):11pp.

Falconer D.A., Moore R.L., Gary G.A., 2008. Magnetogram Measures of Total Nonpotentiality for Prediction of Solar CME From Active Regions of Any Degree of Magnetic Complexity, Astrophysical Journal, 689:1433-1442.

Florios K., Kontogiannis I., Park S-H., et al., 2018. Forecasting Solar Flares Using Magnetogram-Based Predictors and Machine Learning, Solar Physics, 293(2):28.

Janvier M., Aulanier G., Bommier V., et al., 2014. Electric Currents in Flare Ribbons Observations and Three-Dimensional Standard Model, Astrophysical Journal, 788(1):60-70.

Kontogiannis I., Georgoulis M., Park S-H., et al., 2017. Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity, Solar Physics, 292:159.

Kusano K., Bamba Y., Yamamoto T.T., et al., 2012. Magnetic Field Structures Triggering Solar Flares and Coronal Mass Ejections, Astrophysical Journal, 760:31-39.

Leka K.D., Barnes G., 2007. Photospheric Magnetic Field Properties of Flaring versus Flare-Quiet Active Regions IV. A Statistically Significance Sample, Astrophysical Journal, 656:1173-1186.

Liu Y., Sun X., Török T., et al., 2017. Electric-Current neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions, Astrophysical Journal Letters, 846(L6):6pp.

Moore R.L., Falconer D.A., Sterling A.C., 2012. The Limit of Magnetic-Shear Energy in Solar Flare Active Regions, Astrophysical Journal, 750(24):10pp.

Nishizuka N., Sugiura K., Kubo Y., et al., 2017. Solar Flare With Three Machine Learning Algorithms Using Ultra-Violet Brightening and Vector Magnetogram, Astrophysical Journal, 835(2):156.

Parker E.N., 1996. Inferring Mean Electric Currents in Unresolved Fibril Magnetic Fields, Astrophysical Journal, 471:485-488.

Pesnell, W. D., B. J. Thompson, & P.C. Chamberlin, 2012. The Solar Dynamics Observatory (SDO). Solar Physics, 275(1–2), 3–15.

Scherrer P.H., Schou J., Bush R.I., et al., 2012. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO), Solar Physics, 275:207-227.

Schrijver C.J., 2007. A Characteristic Magnetic Field Pattern Associated With All Major Solar Flares And Its Use in Flare Forecasting, Astrophysical Journal, 635:L117-L120.

Zhang H., 2016. Photospheric Magnetic Free Energy Density of Solar Active Regions, 291(12):3501-3517.

Zhang J., Wang J., Deng Y., et al., 2001. Magnetic Flux Cancellation Associated with the Major Solar Event on 2000 July 14, Astrophysical Journal Letters, 548(1):L99-L102.

Glogowski K., Bobra M.G., 2016. A New Python Module for Accessing HMI and AIA Data, http://hmi.stanford.edu/hminuggets/?p=1757, diakses 21 Agustus 2019.

Website HMI, Stanford Solar Group, 2019. What is the Helioseimic and Magnetic Imager (HMI)? http://hmi.stanford.edu/ diakses 26 Agustus 2019.

Refbacks

  • There are currently no refbacks.