LENDUTAN STRUKTUR TWIN BOOM PESAWAT TERBANG NIR AWAK LSU-05 PADA SAAT MENERIMA BEBAN TERBANG (DEFLECTION OF LSU-05 UAV TWIN BOOM STRUCTURE ON RECIEVING THE FLIGHT LOAD)

Atik Bintoro

Abstract

The twin-boom structure is a component of LSU-5 unmanned aireal vehicle (UAV) construction wich was produced by Aeronautic Technology Center of LAPAN. This structure serves as a stabilizer UAV movements. In operations, the structure will recieve flight load which could result as the structure deflection. Through analytical methods involving the mission, dimensions and configuration of the structure of the twin-boom LSU 05 UAV, has done research to determine the extent of the ability of the structure in the fligth load, so the resulting deflection. From this research it was known that at flighting during 130 minutes, starting from take off the beginning of the flight until  cruising with maximum velocity in 130 km/h, the maximum deflection that occurred in the structure only reaches 5.593 x 10-6 m, with a safety factor of 1.3, it’s means that the structure was relatively save. While at the landing on a relatively save was velocity below 14 km/h. If landing at the velocity exceeding 20 km/h can be believed that the twin-boom structure suffered severe damage, because the stress occurs already exceeded from 650 MPa as the yield strenght of e-glass composite materials.

 

Abstrak:

Struktur twin boom merupakan salah satu komponen konstruksi pesawat terbang nir awak LSU-05 hasil karya Pusat Teknologi Penerbangan - LAPAN. Struktur ini berfungsi sebagai penyetabil gerakan pesawat. Dalam operasionalnya, struktur menerima beban terbang yang dapat mengakibatkan timbulnya lendutan. Melalui metode analitis yang melibatkan misi, dimensi dan konfigurasi struktur twin boom pesawat LSU-05, telah dilakukan penelitian untuk mengetahui sejauh mana kemampuan struktur dalam menerima beban terbang, sehingga mengakibatkan lendutan tersebut. Dari penelitian ini diketahui bahwa pada saat penerbangan, selama 130 menit mulai dari tinggal landas di awal penerbangan sampai dengan terbang jelajah pada kecepatan maksimal 130 km/jam, lendutan maksimal yang terjadi pada struktur hanya mencapai 5,593 x 10-6 m, dengan faktor keamanan sebesar 1,3 berarti struktur relatif aman. Sedangkan untuk pendaratan, kecepatan yang relatif aman dapat dilakukan di bawah 14 km/jam. Jika mendarat pada kecepatan melebihi 20 km/jam, struktur twin boom tersebut mengalami kerusakan parah, karena tegangan yang terjadi sudah melebihi 650 MPa sebagai tegangan ijin bahan struktur yakni komposit e-glass.

Keywords

Pesawat terbang nir awak; LSU-05; Beban terbang; Lendutan; Twin-boom; Struktur; E-glass; UAV; LSU-05; Flight load; Deflection; Twin-boom; Structure; E-glass

Full Text:

PDF

References

Atik Bintoro, 2013, Analisis Beban Hentak Struktur Penyangga Landing Gear Pesawat Nir awak LSU03, Jurnal Teknologi Dirgantara, Lembaga Penerbangan dan Antariksa Nasional, Jakarta, Indonesia.

Atik Bintoro, 2014, Penentuan Spesifikasi Propeler Berdasarkan Kinerja Mesin Propulsi Pesawat Terbang Nir Awak LSU-05, Buku Bunga rampai Hasil Penelitian dan Pemikiran ilmiah tentang Teknologi Pesawat terbang tanpa awak, Roket serta Satelit ‘2014, Indonesia Book Project (IBP), Jakarta.

Atik Bintoro, Dede Rahmat, 2013, Penentuan Karakteristik EFI Untuk Pesawat Nir Awak Jenis LSU-05, Buku Bunga Rampai Penelitian dan Kajian Teknologi Pesawat Terbang, Indonesia Book Project (IBP), Jakarta.

Fajar Ari Wandono, Riki Ardiansyah, Dony Hidayat, 2015, Evaluasi Kriteria Kegagalan Tsai-Hill Pada Struktur Rangka Main Landing Gear LSU-05, Buku Bunga Rampai Teknologi Pesawat Terbang sebagai Mitra Pengembang Teknologi Roket dan Satelit Nasional, Indonesia Book Project (IBP), Jakarta.

Farohaji Kurniawan, Yanuar Prabowo, 2013, Analysis of Real Time Experiment for LSU Application, Proceeding of International Seminar on Aerospace Science and Technology, ISAST-2013.

Jeffrey L., Ellwood, 1990, Design and Construction of a Composite Airframe for UAV Research, Master Of Science in Aeronautical Engineering Thesis, Naval Postgraduate School Monterey, California.

Kosim Abdurohman, Fajar Ari Wandono, Doni Hidayat, 2014, Stress Analysis of LSU 05Twin Boom Using Finite Element Method, Proceedings of International Seminar of Aerospace Space Science and Technology, ISAST II-2014, Development of Aeronautics and Space Technology to Support Maritime Application, National Institute of Aeronautics and Space, LAPAN, Jakarta.

Pascual Marqués 1, Azouz Bachouche 2 and Angelo Maligno, 2013, Aerodynamic Evaluation of the Djebel Laassa UAV, International Journal of Unmanned Systems Engineering (IJUSEng), Vol. 1, No. 1, 9-15.

Rajesh A1, Harish G2, M.S. Ganesha Prasad, 2015, Design and Optimization of SUAV Empennage, International Journal of Engineering Research,Volume No.4, Issue No.6, 309-314, ISSN:2319-6890) (online),2347-5013 (print).

S., Graham Kelly, 1993, Fundamental of Mechanical Vibrations, McGraw-Hill International Edition, New York.

Sedat Özöztürk, Altan Kayran, Nafiz Alemdaroğlu, 2012, On the Design and Aero elastic Stability Analysis of Twin Wing-Tail Boom Configuration Unmanned Air Vehicle, Proceeding of 52nd AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, BR,19th, 4 - 7 April 2011, Denver, Colorado.

Shabeer KP, Murtaza M A., 2013, Optimization Of Aircraft Wing With Composite Material, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Issue 6, June 2013, Ahmedabad Gujarat, India.

Sinung Tirtha Pinindriya, Jefri Abner Hamonangan, 2015, Penentuan Karakteristik Aerodinamika Model LSU-05 Melalui Pengujian di Terowongan Angin Subsonik LAPAN, Buku Bunga Rampai Teknologi Pesawat Terbang sebagai Mitra Pengembang Teknologi Roket dan Satelit Nasional, Indonesia Book Project (IBP), Jakarta.

Tim Dokumentasi Pustekbang, 2015, Kumpulan Foto Uji Terbang LSU-05, Pusat Teknologi Penerbangan, LAPAN, Bogor.

Wiranto Arismunandar, 2002, Pengantar Turbin Gas dan Motor Propulsi, Penerbit ITB, Bandung.

Refbacks

  • There are currently no refbacks.