PERANCANGAN AUTOPILOT LATERAL-DIREKSIONAL PESAWAT NIRAWAK LSU-05 (THE DESIGN OF THE LATERAL-DIRECTIONAL AUTOPILOT FOR THE LSU-05 UNMANNED AERIAL VEHICLE)

Muhammad Fajar, Ony Arifianto

Abstract

The autopilot on the aircraft is developed based on the mode of motion of the aircraft i.e. longitudinal and lateral-directional motion. In this paper, an autopilot is designed in lateral-directional mode for LSU-05 aircraft. The autopilot is designed at a range of aircraft operating speeds of 15 m/s, 20 m/s, 25 m/s, and 30 m/s at 1000 m altitude. Designed autopilots are Roll Attitude Hold, Heading Hold and Waypoint Following. Autopilot is designed based on linear model in the form of state-space. The controller used is a Proportional-Integral-Derivative (PID) controller. Simulation results show the value of overshoot / undershoot does not exceed 5% and settling time is less than 30 second if given step command.

 

Abstrak 

Autopilot pada pesawat dikembangkan berdasarkan pada modus gerak pesawat yaitu modus gerak longitudinal dan lateral-directional. Pada makalah ini, dirancang autopilot pada modus gerak lateral-directional untuk pesawat LSU-05. Autopilot dirancang pada range kecepatan operasi pesawat yaitu 15 m/dtk, 20 m/dtk, 25 m/dtk, dan 30 m/dtk dengan ketinggian 1000 m. Autopilot yang dirancang adalah Roll Attitude Hold, Heading Hold dan Waypoint Following. Autopilot dirancang berdasarkan model linier dalam bentuk state-space. Pengendali yang digunakan adalah pengendali Proportional-Integral-Derivative (PID). Hasil simulasi menunjukan nilai overshoot/undershoot tidak melebihi 5% dan settling time kurang dari 30 detik jika diberikan perintah step.

Keywords

lateral-direksional; autopilot; PID

Full Text:

PDF

References

Allerton, D., 2009. Principles of Flight Simulation, John Wiley & Sons Ltd, West Sussex. ISBN: 978-0-470-75436-8.

Duhri, R. A. dan Sasongko, R. A., 2016. Development of Generic Flight Dynamic Mathematical Model for Aircraft Flight Simulation and Analysis. Advance in Aerospace Science and Technology in Indonesia, Vol. I, 144-158.

Eko Budi Purwanto, dkk, 2013, Pemodelan dan Simulasi Sistem Kendali Proportional Integral Derivative untuk Kestabilan Dinamika Terbang, Majalah Sains dan Teknologi Dirgantara Vol. 8 No. 2, 48-59.

Etkin, B. dan Reid, L. D., 1996. Dynamics of Flight Stability and Control, John Wiley & Sons Inc. ISBN: 0-471-03418-5.

Gouthami, E., dan Rani, M.A., 2016. Modeling of an Adaptive Controller for an Aircraft Roll Control System using PID, Fuzzy-PID and Genetic Algorithm. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) Volume 11, Issue 1, Ver.II, 15-24.

Kada, B. dan Ghazzawi, Y., 2011. Robust PID Controller Design for an UAV Flight Control System, Proceedings of the World Congress on Engineering and Computer Science Vol II, WCECS, October 19-21, San Francisco, USA. ISBN: 978-988-19251-7-6.

Mark Drela, AVL. URL http://web.mit.edu/ drela/Public/web/avl/. Diakses: 14 Pebruary 2017.

Nair, M.P. dan Harikumar, R., 2015. Longitudinal Dynamics Control of UAV, International Conference on Control, Communication & Computing India (ICCC), 19-21 November.

Nelson, R. C., 1998. Flight Stability and Automatic Control, McGraw-Hill, New York. ISBN: 0-07-046218-6.

Ogata, K., 2010. Modern Control Engineering, Prentice Hall, New Jersey. ISBN: 0-13-615673-8.

Pustekbang, LSU-05, LAPAN. URL http:// pustekbang.lapan.go.id. Diakes: 20 Januari 2017.

Sufendi, dkk, 2013. Design and Implementation of Hardware-In-The-Loop-Simulation for UAV Using PID Control Method, International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), November 7-8, Bandung.

Tim LSU-05, 2014. Progress Report LAPAN Surveillance UAV (LSU) 05, Pusat Teknologi Penerbangan LAPAN, Bogor.

Refbacks

  • There are currently no refbacks.