Sun Sensor dan Magnetometer Sebagai Sensor Penentu Sikap Satelit Inklinasi Rendah LAPAN-A2

Satriya Utama, Patria Rachman Hakim

Abstract

LAPAN-A2 merupakan satelit low earth orbit (LEO), inklinasi rendah yang salah satu misinya adalah pengamatan citra bumi. Dalam melaksanakan misi pengambilan citra ataupun penurunan data, sikap satelit perlu diketahui operator di ruas bumi. Sebagai sensor utama untuk mengetahui sikap satelit digunakan star sensor. Namun ketika berada di wilayah terang, star sensor dapat dengan mudah terganggu oleh cahaya matahari atau bumi. Tulisan ini memperkenalkan penentuan sikap alternatif menggunakan sun sensor dan magnetometer. Idenya, sun sensor dan magnetometer mengukur vektor matahari dan vektor medan magnet pada sumbu satelit. Lalu, dengan menggunakan model posisi matahari dan propagator orbit SGP4, vektor matahari dan vektor medan magnet pada sumbu inersial bumi dapat dihitung. Dari dua vektor pada dua tata acuan yang berbeda, matriks rotasi yang merupakan representasi sikap satelit terhadap bumi dapat dihitung. Dari pengujian, metode ini berhasil menghitung sikap satelit dengan akurasi 3o.

Keywords

LAPAN-A2, penentuan sikap, sun sensor, magnetometer

Full Text:

PDF

References

Agrawal, P. C. (2017). AstroSat : From Inception to Realization and Launch. Journal of Astrophysics and Astronomy, 38(2), 1–8. https://doi.org/10.1007/s12036-017-9449-6

Blanco, J. (2014). A tutorial on se (3) transformation parameterizations and on-manifold optimization. University of Malaga, Tech. Rep, (3), 1–56. Retrieved from http://www.ual.es/personal/jlblanco/%5Cnhttp://mapir.isa.uma.es/%5Cnhttp://mapir.isa.uma.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf

Chulliat, A., Macmillan, S., Alken, P., Beggan, C., Nair, M., Hamilton, B., … Thomson, A. (2015). The US/UK World Magnetic Model for 2015-2020: Technical Report. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5TB14V7

Großekatthöfer, K., & Yoon, Z. (2012). Introduction into quaternions for spacecraft attitude representation. TU Berlin, 1–16. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Introduction+into+quaternions+for+spacecraft+attitude+representation#0

Hardhienata, S., Triharjanto, R. H., & Mukhayadi, M. (2011). LAPAN-A2 : Indonesian Near-Equatorial Surveilance Satellite. Presented at the 18th Asia-Pacific Regional Space Agency Forum (APRSAF), Singapore, (November).

Hart, C. (2009). Satellite Attitude Determination Using Magnetometer Data Only. In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition (pp. 1–11). Reston, Virigina: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2009-220

Hoots, F. R., & Roehrich, R. L. (1980). Spacetrack Report No. 3--Models for Propagation of NORAD Elements Sets. Spacetrack Report, 3(3), 1–91.

Ivanov, D., Ovchinnikov, M., Ivlev, N., & Karpenko, S. (2015). Analytical study of microsatellite attitude determination algorithms. Acta Astronautica, 116, 339–348. https://doi.org/10.1016/j.actaastro.2015.07.001

Kutlu, a., Haciyev, C., & Tekinalp, O. (2007). Attitude Determination and Rotational Motion Parameters Identification of a LEO Satellite Through Magnetometer and Sun Sensor Data. 2007 3rd International Conference on Recent Advances in Space Technologies, 7–10. https://doi.org/10.1109/RAST.2007.4284033

Madina, R., Qadir, A. A., & Utama, S. (2015). Penentuan Orbit Satelit LAPAN-A2. Media Dirgantara, 33–38.

Marques, S., Clements, R., & Lima, P. (2000). Comparison of small satellite attitude determination methods. American Institute of Aeronautics and Astronautics, (August). https://doi.org/10.2514/6.2000-3948

Ni, S., & Zhang, C. (2011). Attitude determination of nano satellite based on gyroscope, sun sensor and magnetometer. Procedia Engineering, 15, 959–963. https://doi.org/10.1016/j.proeng.2011.08.177

Ovchinnikov, M., & Ivanov, D. (2014). Approach to study satellite attitude determination algorithms. Acta Astronautica, 98(1), 133–137. https://doi.org/10.1016/j.actaastro.2014.01.024

Post, M. A., Li, J., & Lee, R. (2013). A Low-Cost Photodiode Sun Sensor for CubeSat and Planetary Microrover. International Journal of Aerospace Engineering, 2013, 1–9. https://doi.org/10.1155/2013/549080

Rahman, A., & Mukhayadi, M. (2009). Penentuan sikap satelit berdasarkan distribusi arus listrik pada panel surya satelit lapat-tubsat. Jurnal Teknologi Dirgantara, 7, 11–18.

Saifudin, M. A., & Mukhayadi, M. (2015). Sistem Attitude Determination and Control (ADCS) Satelit LAPAN-A2/Orari. Media Dirgantara, 39–46.

Saifudin, M. A., & Triharjanto, R. H. (2010). Algoritma Pengenalan Pola Bintang untuk Deteksi Posisi Bintang pada Star Sensor Satelit LAPAN. Jurnal Teknologi Dirgantara, 8(1), 36–42.

Seidelmann, P. K. (Ed.). (1992). Explanatory Supplement to the Astronomical Almanac. California: University Science Books.

Springmann, J. C., Sloboda, A. J., Klesh, A. T., Bennett, M. W., & Cutler, J. W. (2012). The attitude determination system of the RAX satellite. Acta Astronautica, 75, 120–135. https://doi.org/10.1016/j.actaastro.2012.02.001

Theil, S., Appel, P., & Schleicher, A. (2003). Low Cost , Good Accuracy - Attitude Determination Using Magnetometer and Simple Sun Sensor. Annual AIAA/USU Conference on Small Satellites, 17.

Triharjanto, R. H., & Saifudin, M. A. (2013). Tahap Pengembangan Star Sensor Satelit Mikro LAPAN. In Pengembangan Teknologi Satelit di Indonesia : Sistem,Subsistem, dan Misi Operasi (pp. 117–128). Bogor: IPB Press.

Walker, A., & Kumar, M. (2017). CubeSat Attitude Determination Using Low-Cost Sensors and Magnetic Field Time Derivative. 55th AIAA Aerospace Sciences Meeting, (January), 1–24. https://doi.org/10.2514/6.2017-0166

Zhou, Z., Wu, J., Wang, J., & Fourati, H. (2018). Optimal, Recursive and Sub-Optimal Linear Solutions to Attitude Determination from Vector Observations for GNSS/Accelerometer/Magnetometer Orientation Measurement. Remote Sensing, 10(3), 377. https://doi.org/10.3390/rs10030377

Refbacks

  • There are currently no refbacks.