COMBINATION OF SPECKLE DIVERGENCE AND NEIGHBORHOOD ANALYSIS TO CLASSIFY SETTLEMENT FROM TERASAR-X DATA

Rokhis Komarudin, Agung Indrajit

Abstract

Abstract.  The  objectives  of  this  research  were  to  develop  and  improve  methods  for determination  of  settlements  area  with  focus  on  synthetic  aperture  radar  (SAR)  data. Remote  sensing  settlement  classification  has  made  great  progress,  both  for  optical  and radar  data  as  well  for  their  fusion.  Yet,  in  radar  imagery,  settlement  classification  still contains  some  problems.  Several  studies  on  application  of  radar  imagery  have  been conducted  using  techniques  such  as  textural  analysis,  multi-temporal  analysis,  statistical model,  spatial  indexes,  and  object-based  classification.  Most  of  the  development  methods have several problems in the specific area especially in the tropical country. Several studies also  showed  that  settlement  classification  accuracies  were  just  below  60%.    This  was  not sufficient    enough  to  classify  settlement  areas  using  SAR  imagery.  Therefore,  in  this research, we proposed a new method i.e., the combination of the speckle divergence and the neighborhood  analysis.  The  proposed  method  was  applied  to  classify  settlement  area  in Cilacap  and  Padang  Districts  of  Indonesia.  The  results  showed  that  the  proposed  method produced a good accuracy i.e., 85.5% for Cilacap Districts and 78.1% for Padang Districts. 

Full Text:

PDF

Refbacks

  • There are currently no refbacks.