APPLICATION OF CMORPH DATA FOR FOREST/LAND FIRE RISK PREDICTION MODEL IN CENTRAL KALIMANTAN
Abstract
Central Kalimantan Province is a region with high level of forest/land fire, especially during dry season. Forest/land fire is a dangerous ecosystem destroyer factor, so it needs to be anticipated and prevented as early as possible. CMORPH rainfall data have good potential to overcome the limitations of rainfall data observation. This research is aimed to obtain relationship model between burned acreage and several variables of rainfall condition, as well as to develop risk prediction model of fire occurrence and burned acreage by using rainfall data. This research utilizes information on burned acreage (Ha) and CMORPH rainfall data. The method applied in this research is statistical analysis (finding correlation and regression of two phases), while risk prediction model is generated from the resulting empirical model from relationship of rainfall variables using Monte Carlo simulation based on stochastic spreadsheet. The result of this study shows that precipitation accumulation for two months prior to fire occurrence (CH2Bl) has correlation with burned acreage, and can be estimated by using following formula (if rainfall ≤ 93 mm): Burnt Acreage (Ha) = 5.13 – 21.7 (CH2bl – 93) (R2 = 67.2%). Forest fire forecasts can be determined by using a precipitation accumulation for two months prior to fire occurrence and Monte Carlo simulation. Efforts to anticipate and address fire risk should be carried out as early as possible, i.e. two months in advance if the probability of fire risk had exceeded the value of 40%.
Keywords
Full Text:
PDFReferences
Adiningsih ES, (2005), The Climate Anomaly and Forest/Land Fire Risk in Sumatera. Postgraduate Dissertation. Bogor: Bogor Agricultural University (IPB).
Anderson IP, Imanda ID, Muhnandar, (1999), Vegetation Fires in Sumatera, Indonesia: A First Look at Vegetation Indices and Soil Dryness Indices in Relation to Fire Occurrence. Palembang: Balai Inventarisasi dan Perpetaan Hutan Wilayah II dan Kanwil Kehutanan dan Perkebunan.
Boer R., (2002), Analisis Risiko Iklim untuk Produksi Pertanian. Makalah pada Pelatihan Dosen Se Sumatera-Kalimantan dalam Bidang Pemodelan dan Simulasi Pertanian dan Lingkungan. Bogor.
Boer R., Ardiansyah M., Prasasti I., Syaufina L., Siddiki R., (2010), Analisis Hubungan antara Jumlah Titik - titik Panas (Hotspot) dengan Luas Kebakaran Hutan dan Curah Hujan. Prosiding Pertemuan Ilmiah Tahunan XVII dan Kongres Mapin V: Teknologi Geospasial untuk Ketahanan Pangan dan Pembangunan Berkelanjutan, IPB International Convention Centre. Bogor.
Buchholz G., Weidemann D., (2000), The Use of Simple Fire Danger Rating Systems as a Tool for Early Warning in Forestry. International Forest Fire News 23:32-36.
Canadian Forest Service, (1997), A Wildlife Threat Rating System for the MacGregor Model Forest. Final Report MMF Practices-3015. Canada.
Carmel Y., Paz S., Jahashan F., Shoshany M., (2009), Assessing Fire Risk Using Monte Carlo Simulations of Fire Spread. Forest Ecology and Management 257(1): 370 – 377. doi: 10.1016/j.foreco.2008.09.039.
Ceccato P., Jaya I., Qian J., Tippett M., Robertson A., (2007), Early Warning and Response to Fires in Kalimantan, Indonesia. In M. Brady and M. Sivakumar (Eds.) Advances in Operational Weather Systems for Fire Danger Rating. Springer.
Chandler C., Cheney P., Thomas L., Trabaud, Williams D., (1983), Fire in Forestry: Volume 1, Forest Fire Behavior and Effects. New York: John Wiley & Sons.
Chuvieco E., Congalton RG, (1989), Application of Remote Sensing Geographic Information Systems to Forest Fire Hazard Mapping. Remote Sensing of Environment 29: 147–159, doi:10.1016/0034-4257(89)90023-0.
Chuvieco E., Allgower B., Salas J., (2003), Integration of Physical and Human Factors in Fire Danger Assessment, In E. Chuvieco (Ed.), Wild Land Fire Danger Estimation and Mapping, the Role of Remote Sensing Data. New Jersey: World Scientific.
Chuvieco E., Agaudo I., Cocero D., Riano D., (2003), Design of an Empirical Index to Estimate Fuel Moisture Content from NOAA-AVHRR Analysis in Forest Fire Danger Studies, Int. Journal of Remote Sensing 24: 1621 – 1637. doi:10.1080/01 4 31160210144660.
Decision Assistance Branch Meteorological Development Laboratory National Weather Service, (2008), An Overview of Satellite-Based Rainfall Techniques in Sixth NOAA CREST Sysposium. Puerto Rico.
Dimitrakopoulos AP, Mbemmerzouk, (1996), Evaluation of the Canadian Forest Fire Danger Rating System in the Mediterranean-type Environment of Greece. Proceedings of International Symposium on Applied Agrometeorology and Agroclimatology, Volos, Greece, April 24 – 26, 1996.
Food and Agricultural Organization (FAO), (1986), Wild Land Fire Management Terminology, Report number 70, FAO Foresty Paper, Roma, M-99, ISBN: 92-5-0024207.
Hidayat A., (1997), Membangun Sistem Pemantauan Kekeringan Vegetasi untuk Peringatan Dini Kebakaran Hutan Menggunakan Data Penginderaan Jauh. Riset Unggulan Terpadu III Bidang Teknologi Perlindungan Lingkungan, Jakarta: Dewan Riset Nasional, Kantor Menteri Negara Riset dan Teknologi.
Joyce RJ, Janowiak JE, Arkin PA, Xie P., (2004), CMORPH: A Method That Produces Global Precipitation Estimates From Passive Microwave And Infrared Data At High Spatial And Temporal Resolution, J. Hydromet. 5: 487-503.
Junaidi (2001), Relationship between Vegetation Index and Soil Moisture at Burned Area in Jambi. Undergraduate Thesis. Bogor: Departement of Geophysic and Meteorology, Bogor Agricultural University (IPB).
Maki M., Ishiahra M., Tamura M., (2004), Estimation of Leaf Water Status to Monitor the Risk of Forest Fires by Using Remotely Sensed Data, Remote Sensing of Environment 90: 441 – 450.
Mason C., Sheridan G., Smith H., Chong D., Tolhurst K., (2011), Wildfire Risk to Water Supply Catchments: A Monte Carlo Simulation Model in 19th International Congress on Modelling and Simulation, Perth, Australia, December 12 – 16, 2011. http://mssanz.org.au/modsim2011 Accessed on June 12, 2012].
Mathworks. http://www.mathworks.com/discovery/ monte-carlo-simulation.html. Monte Carlo Simulation [Accessed on May 31, 2012].
Merril DF, Alexander ME (Eds), (1987), Glossary of Forest Fire Management Terms (4th ed.), Ottawa, Ontario, National Research Council of Canada, Canadian Committe on Forest Fire Management, Publication NRCC No. 26516.
Oktavariani D., (2008), The Evaluation of CMORPH Data Output Accuracy for Rainfall Data Interpolation in Indonesia. Bogor: Department of Meteorology and Geophysic, Bogor Agricultural University.
Riskamp http://www.riskamp.com. What is Monte Carlo Simulation? [Accessed on May, 31, 2012].
Satriani N., (2001), Pemetaan Kerawanan Kebakaran Hutan di Kalimantan dengan Menggunakan Sistem Informasi Geografis (Studi Kasus Tahun 1997 – 2000). Thesis, Faculty of Mathematics and Science. Bogor: Bogor Agricultural University (IPB).
Sawilowsky S., (2003), You Think You’ve Got Trivials? Journal of Modern Applied Statistical Methods 2(1): 218 – 225.
Syaufina L., Nuruddin AA, Basharuddin J., See LF, Yusof MRM, (2004), The Effects of Climatic Variations on Peat Swamp Forest Condition and Peat Combustibility. Journal of Tropical Forest Management X(1): 1 – 14.
Taylor SW, Alexander ME, (2006), Science, Technology, and Human Factors in Fire Danger Rating: The Canadian Experiences, Int. Journal of Wildland Fire 15:121 – 135. doi: 10.1071/wf05021.
Refbacks
- There are currently no refbacks.