DETECTING THE SURFACE WATER AREA IN CIRATA DAM UPSTREAM CITARUM USING A WATER INDEX FROM SENTINEL-2
Abstract
This paper describes the detection of the surface water area in Cirata dam, Â upstream Citarum, using a water index derived from Sentinel-2. MSI Level 1C (MSIL1C) data from 16 November 2018 were extracted into a water index such as the NDWI (Normalized Difference Water Index) model of Gao (1996), McFeeters (1996), Roger and Kearney (2004), and Xu (2006). Water index were analyzed based on the presence of several objects (water, vegetation, soil, and built-up). The research resulted in the ability of each water index to separate water and non-water objects. The results conclude that the NDWI of McFeeters (1996) derived from Sentinel-2 MSI showed the best results in detecting the surface water area of the reservoir.
Keywords
Full Text:
PDFReferences
Li, P., Jiang, L., & Feng, (2014). Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) Sensors., Remote Sensing, 6, :310-329., DOI:10.3390/ rs6010310
Suwarsono, Nugroho J.T, Wiweka, 2013. Identification of Inundated Area Using Normalized Difference Water Index (NDWI) on lowland region of Java Island, International Journal of Remote Sensing and Earth Sciences 10(2): 114-121
Acharya, T.D., Yang, I.T., Subedi, A. et al., (2016). Change detection of lakes in Pokhara, Nepal using Landsat data., Proceedings 1(17),: doi:10.3390/ecsa-3-E005
Ashraf, M., & Nawaz, R., (2015). A Comparison of Change Detection Analyses Using Different Band Algebras for Baraila Wetland with Nasa’s Multi-Temporal Landsat Dataset., Journal of Geographic Information System, 17,:1-19.
Chavez, Jr. P.S., (1988)., An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment 24, :459–79.
Chavez, Jr. P.S., (1989)., Radiometric Calibration of Landsat Thematic Mapper Mutispectral Images. Photogrammetric Engineering and Remote Sensing, 55(9),:1285-1294.
Ding, F. (2009). “A New Method for Fast Information Extraction of Water Bodies Using Remotely Sensed Data.†Remote Sensing Technology and Application, 24 (2),: 167–171.
Drusch, M., Del Bello, U., Carlier, S. et al., (2012). Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment 120, 25-36. Https://doi.org/10.1016/j.rse.2011.11.026.
Du Z., Linghu, B., Ling, F. et al., (2012). Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China, Journal of Applied Remote Sensing, 6(1), 063609, https://doi.org/10.1117/1.JRS.6.063609
Du, Z., Li, D., Zhou, L., et al., (2014). “Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sensing Letters, 5 ((7), 672–681.doi:10.1080/2150704X.2014.960606
ESA (2013). Sentinel 2, The Operational Copernicus Optical High Resolution Land Mission. Https://www.esa.int/copernicus.
ESA (2015). Sentinel-2 Products Specification Document. Ref : S2-PDGS TAS-DI-PSD, Issue : 13.1, Date : 18/11/2015. Https://sentinel.esa.in /web/sentinel/user-guides/document-library.
Feng, D., (2009). A new method for fast information extraction of water bodies using remotely sensed data., Remote Sensing Technology and Application, 24(2),. http:// www.oalib.com/paper/1468694#.XgQY7EczZ1s
Gao, B.C., (1996). NDWI a normalized difference water index for remote sensing of vegetation liquid water from Space., Remote Sensing of Environment, 58, :257-266.
Kwang, C., Osei jr Jr, E.M., & Amoah, A.S., (2018). Comparing of Landsat 8 and Sentinel 2A using Water Extraction Indexes over Volta River., Journal of Geography and Geology, 10(1),; 2018, doi:10.5539/jgg.v10n1p1
Li, W., Du, Z., Ling, F., et al. (2013)Li, W., Z. Du, F. Ling, D. Zhou, H. Wang, Y. Gui, B. Sun, and X. Zhang. (2013). “A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI. â€Remote Sensing 5 (11),: 5530–5549. doi:10.3390/rs5115530
McFeeters, S.K., (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features., International Journal of Remote Sensing 17(7),: 1425-1432., DOI: 10.1080/ 01431169608948714
Rogers, A.S., & Kearney, M.S. (2004). Reducing Signature Variability in Unmixing Coastal Marsh Thematic Mapper Scenes Using Spectral Indices. International Journal of Remote Sensing, 25(12), 2317–2335.
Sekertekin, A., Cicekli, S.Y., & Arslan, N. (2018). Index-Based Identification of Surface Water Resources Using Sentinel-2 Satellite Imagery. 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, 2018, pp. 1-5, doi: 10.1109/ISMSIT.2018.8567062.Xu H, 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, International Journal of Remote Sensing 27(14): 3025–3033
Suwarsono, Nugroho, J.T., & Wiweka. (2013). Identification of Inundated Area Using Normalized Difference Water Index (NDWI) on lowland region of Java Island. International Journal of Remote Sensing and Earth Sciences, 10(2), 114-121.
Szabó, S., Gácsi, Z., & Balász, B.B. (2016)Szabó, S., Gácsi, Z., & Balász, (2016). Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories., Landscape & Environment, 10(3-4),: 194-202., DOI: 10.21120/LE/10/3-4/13
Wang, X., Liu, Y., Ling et al. (2017)Wang, X., Liu, Y., Ling et al., (2017). Spatio-Temporal Change Detection of Ningbo Coastline Using Landsat Time-Series Images during 1976–2015., International Journal of Geo-Information, 6(68), doi:10.3390 /ijgi6030068
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27(14), 3025–3033.
Yang J., & Du, X., (2017). An enhanced water index in extracting water bodies from Landsat TM imagery., Annals of GIS, 23(:3), 141-148., DOI:10.1080/19475683.2017.1340339
Yulianto, F., Suwarsono, Sulma, S., et al. (2018)Yulianto, F., Suwarsono, Sulma, S., et al., 2018. Observing the inundated area using Landsat-8 multitemporal images and determination of flood-prone area in Bandung basin. International Journal of Remote Sensing and Earth Sciences, 15(2),: 131-140
Refbacks
- There are currently no refbacks.