SHORELINE CHANGES AFTER THE SUNDA STRAIT TSUNAMI ON THE COAST OF PANDEGLANG REGENCY, BANTEN

Fandi Dwi Julianto, Cahya Rizki Fathurohman, Salsabila Diyah Rahmawati, Taufiq Ihsanudin

Abstract

The Sunda Strait tsunami occurred on the coast of west Banten and South Lampung at 22nd December 2018, resulting in 437 deaths, with10 victims missing. The disaster had various impacts on the environment and ecosystem, with this area suffering the greatest effects from the disaster. The utilisation of remote sensing technology enables the monitoring of coastal areas in an effective and low-cost manner. Shoreline extraction using the Google Earth Engine, which is an open-source platform that facilitates the processing of a large number of data quickly. This study used Landsat-8 Surface Reflectance Tier 1 data that was geometrically and radiometrically corrected, with processing using the Modification of Normalized Difference Water Index (MNDWI) algorithm. The results show that 30.1% of the coastline in Pandeglang Regency occurred suffered abrasion, 20.2% suffered accretion,while 40.7% saw no change. The maximum abrasion of 130.2 meters occurred in the village of Tanjung Jaya. Moreover, the maximum shoreline accretion was 43.3 meters in the village of Panimbang Jaya. The average shorelinechange in Pandeglang Regencywas 3.9 meters.

Keywords

Landsat-8, Google Earth Engine, Abrasion, Tanjung Jaya, MNDWI

Full Text:

PDF

References

Bartlett D, Smith J, (2004), GIS for coastal zone management, CRC, Boca Raton, Fla.

Mutanga O, Kumar L, (2019), Google Earth Engine Applications, Remote Sensing, 11:591, doi:10.3390/rs11050591

Gonçalves G, Duro N, Sousa E, Figueiredo I, (2015), Automatic Extraction Of Tide-Coordinated Shoreline Using Open Source Software And Landsat Imagery, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 40(7):953-957. doi: 10.5194/isprsarchives-xl-7-w3-953-2015

Sudarsono, B, (2011), Inventarisasi perubahan wilayah pantai dengan metode penginderaan jauh (studi kasus Kota Semarang), Teknik, 32(2): 163-170.

Xu H, (2006), Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery, International Journal of Remote Sensing, 27:3025-3033. doi:10.1080/01431160600589179

Ko B, Kim H, Nam J, (2015), Classification of Potential Water Bodies Using Landsat 8 OLI and a Combination of Two Boosted Random Forest Classifiers, Sensors, 15:13763-13777. doi: 10.3390/s150613763

Ihlen Vaughn, (2019), Landsat Data(L8) Data User Handbook version 5, Landsat Science Official Website, USGS. Digital Shoreline Analysis System (DSAS)

Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Ergul, A, (2009), The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change (No. 2008-1278), US Geological Survey

Himmelstoss, E.A., Henderson, R.E., Kratzmann, M.G., and Farris, A.S., 2018, Digital Shoreline Analysis System (DSAS) version 5.0 user guide: U.S. Geological Survey Open-File Report 2018–1179, 110 p., https://doi.org/10.3133/ofr20181179.

Bouchahma M, Yan W, (2013), Monitoring shoreline change on Djerba Island using GIS and multi-temporal satellite data, Arabian Journal of Geosciences, 7:3705-3713, doi: 10.1007/s12517-013-1052-9

Prastyo W. D, Gaol J. L, Nurjaya I. W, (2019), Perubahan Garis Pantai Pasca Tsunami di Pesisir Barat Banten dengan Menggunakan Data Citra Landsat 8 OLI, Undergraduate, Institut Pertanian Bogor

Muhari, A., Heidarzadeh, M., Susmoro, H. et al. ,(2018), Anak Krakatau Volcano Tsunami as Inferred from Post-Tsunami Field Surveys and Spectral Analysis, Pure and Applied Geophysics, 176:5219–5233, https://doi.org/10.1007/s00024-019-02358-2

Syaharani L, Triyatno T, (2019) Analisis Perubahan Garis Pantai Kabupaten Padang Pariaman dan Kota Pariaman Tahun 1988-2018 Menggunakan Digital Shoreline Analysis System (DSAS), JURNAL BUANA 3:1056, doi: 10.24036/student.v3i5.597

Kanwar Vivek Singh, Raj Setia, Shashikanta Sahoo, Avinash Prasad & Brijendra Pateriya, (2015), Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level, Geocarto International, 30:6, 650-661, DOI: 10.1080/10106049.2014.965757

Ozturk D, Sesli F, (2015), Shoreline change analysis of the Kizilirmak Lagoon Series, Ocean & Coastal Management, 118:290-308, doi: 10.1016/j.ocecoaman.2015.03.009

Jianzhong Yin and Fenqin He, (2011), Researching the method of coastline extracted by remote sensing image, International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, 2019:3441-3444, doi: 10.1109/RSETE.2011.5965052

El-Asmar H, Hereher M, (2010), Change detection of the coastal zone east of the Nile Delta using remote sensing, Environmental Earth Sciences, 62:769-777. doi: 10.1007/s12665-010-0564-9

Cristina Gómez, Michael A. Wulder, Alastair G. Dawson, William Ritchie & David R. Green, (2014), Shoreline Change and Coastal Vulnerability Characterization with Landsat Imagery: A Case Study in the Outer Hebrides, Scotland, Scottish Geographical Journal, 130:4, 279-299, DOI: 10.1080/14702541.2014.923579

Wicaksono A, Wicaksono P, Khakhim N et al, (2018), Tidal Correction Effects Analysis on Shoreline Mapping in Jepara Regency, Journal of Applied Geospatial Information, 2:145-151. doi: 10.30871/jagi.v2i2.981

Refbacks

  • There are currently no refbacks.