OIL PALM PLANTATION DETECTION IN INDONESIA USING SENTINEL-2 AND LANDSAT-8 OPTICAL SATELLITE IMAGERY (CASE STUDY: ROKAN HULU REGENCY, RIAU PROVINCE)

Yunita Nurmasari, Arie Wahyu Wijayanto

Abstract

The objective of this work is to assess the capability of multispectral optical Landsat and Sentinel images to detect oil palm plantations in Rokan Hulu, Riau, one of the largest palm oil producers in Indonesia, by combining multispectral bands and composite indices. In addition to comparing two different sets of satellite images, we also ascertain which gives the best performance among the supervised machine learning classifiers CART Decision Tree, Random Forest, Support Vector Machine, and Naive Bayes. With the use of multispectral bands and derived composite indices, the best classifier achieved an overall accuracy of up to 92%. The findings and contributions of the study include: (1) insight into a set of feature combinations that provides the highest model accuracy, and (2) an extensive evaluation of machine learning-based classifiers on two different optical satellite imageries. Our study could further be beneficial for the government in providing more scalable plantation statistics.

Keywords

remote sensing, oil palm detection, Sentinel-2, Landsat-8, supervised machine learning

Full Text:

PDF

References

Abdel-Hamid, A., Dubovyk, O., El-Magd, I. A., & Menz, G. (2018). Mapping mangroves extents on the Red Sea coastline in Egypt using polarimetric SAR and high resolution optical remote sensing data. Sustainability (Switzerland), 10(3),1–22. doi:10.3390/su10030646

Badan Pusat Statistik (2020). Statistik Indonesia 2020. Badan Pusat Statistik, Indonesia.

Chen, W., Li, X., & Wang, L. (2020). Fine land cover classification in an open pit mining area using optimized support vector machine and world view-3 imagery. Remote Sensing, 12(1),12–14. doi:10.3390/RS12010082

Chen, D., Stow, D. A., & Gong, P. (2004). Examining the effect of spatial resolution and texture window size on classification accuracy: an urban environment case. International Journal of Remote Sensing, 25(11), 2177-2192. doi:10.1080/01431160310001618464

Dwinita, G., & Murti, S. H. (2016). Aplikasi citra penginderaan jauh untuk estimasi produksi kelapa sawit (elaies guineensis jacq) berbasis Normalized Different Vegetation Index (Perkebunan PT. Mutiara Sawit Seluma, Kabupaten Seluma, Provinsi Bengkulu). J Bumi Indonesia, 5(4), 1–12.

Freudenberg, M., Nölke, N., Agostini, A., Urban, K., Wörgötter, F., & Kleinn, C. (2019), Large scale palm tree detection in high resolution satellite images using U-Net. Remote Sensing, 11(3), 1–18. doi: 10.3390/rs11030312

Hoeser, T., & Bachofer, F. (2020). Object detection and image segmentation with deep learning on earth observation data : A review — part II : applications. Remote Sensing, 12(18), 1–47.doi:10.3390/rs12183053

Lee, J. S. H., Wich, S., Widayati, A., & Koh, L. P. (2016). Detecting industrial oil palm plantations on Landsat images with Google Earth Engine. Remote Sensing Appl Soc Environ, 4, 219–224. doi: 10.1016/j.rsase.2016.11.003

Li, L., Dong, J., Tenku, S. N., & Xiao, X. (2015), Mapping oil palm plantations in cameroon using PALSAR 50-m orthorectified mosaic images. Remote Sensing, 7(2), 1206–1224. doi:10.3390/rs70201206

Mansor, S. A., & Sarker, M. L. R. (2015). Remote sensing technique for estimating the age of oil palm using high resolution image. Paper presented at the 36th Asian Conference on Remote Sensing 2015. Phillipines 24-28 October 2015.

Marsuhandi, A. H., Triscowati, D. W., & Wijayanto, A. W. (2020). Tinjauan pemanfaatan big data penginderaan jauh dan pembelajaran mesin untuk official statistics di wilayah perkotaan. Jurnal Aplikasi Statistika & Komputasi Statistik, 12(2), 31–40. doi: 10.34123/jurnalasks.v12i2.282

McCarthy, N., (2020), Which countries produce the most palm oil? Available online. Retrieved 1 Feb 2021, from https://www.statista.com/chart/23097/amount-of-palm-oil-produced-in-selected-countries.

Mubin, N. A., Nadarajoo, E., Shafri, H. Z. M., & Hamedianfar, A. (2019), Young and mature oil palm tree detection and counting using convolutional neural network deep learning method. Int J Remote Sensing, 40(19), 7500–7515.doi:10.1080/01431161.2019.1569282

Santucci, E.. (2017). Quantum Minimum Distance Classifier. Entropy, 19(12), 659–673. doi:10.3390/e19120659

Shafri, H. Z., Hamdan, N., & Saripan, M. I. (2011), Semi-automatic detection and counting of oil palm trees from high spatial resolution airborne imagery. International Journal of Remote Sensing, 32(8), 2095–2115. doi:10.1080/01431161003662928

Solutions HG. (2013). Vegetation analysis: using vegetation indices in ENVI. Retrieved 3 Feb 2021, from http://www.harrisgeospatial.com/Learn/WhitepapersDetail/TabId/802/ArtMID/2627/ArticleID/13742/Vegetation-Analysis-Using-Vegetation-Indices-in-ENVI.aspx.

Srestasathiern, P., & Rakwatin, P. (2014). Oil palm tree detection with high resolution multi-spectral satellite imagery. Remote Sensing, 6(10), 9749–9774. doi:10.3390/rs6109749

Tridawati, A., & Darmawan, S. (2015) Investigation of classification algorithm for land cover mapping in oil palm area using optical remote sensing. Paper presented at the 1st faculty of industrial technology international congress, Institut Teknologi Nasional, Bandung, 9–11 October 2017.

Triscowati, D. W., Sartono, B., Kurnia, A., Domiri, D. D., & Wijayanto, A. W. (2019). Multitemporal remote sensing data for classification of food crops plant phase using supervised random forest. Paper presented at the Sixth Geoinformation Science Symposium, International Society for Optics and Photonicsvol, Yogyakarta, 21 November 2019.

Triscowati, D. W., Sartono, B., Kurnia, A., Dirgahayu, D., & Wijayanto, A. W. (2020), Classification of rice-plant growth phase using supervised Random Forest method

based on Landsat-8 multitemporal data. Int J Remote Sensing Earth Sci, 16(2),187–196. doi:10.30536/j.ijreses.2019.v16. a3217

United States Department of Agriculture (2020). Oil Palm World Production. In: Oil Palm Explorer. Retrieved 1 Feb 2021, from http://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=4243000.

Vadivelu, S., Ahmad, A., & Choo, Y. H. (2014). Remote sensing techniques for oil palm age classification using Landsat-5 TM satellite. Sci Int (Lahore) 26(4),1547–1551.

Wijayanto, A. W., Triscowati, D. W., & Marsuhandi, A. H. (2020). Maize field area detection in East Java, Indonesia : An integrated multispectral remote sensing and machine learning approach. Paper presented at the 12th International Conference on Information Technology and Electrical Engineering (ICITEE), IEEE, Yogyakarta, 6–8 October 2020.

Zhang, W., Tan, G., Zheng, S., Sun, C., Kong, X., & Liu, Z. (2018), Land cover change detection in urban lake areas using multi-temporary very high spatial resolution aerial images. Water (Switzerland), 10(2), 1–16. doi:10.3390/w10020001.

Refbacks

  • There are currently no refbacks.