HYDRO-METEOROLOGICAL ASPECTS OF THE 2021 SOUTH KALIMANTAN FLOOD: TOPOGRAPHY, TIDES, AND PRECIPITATION
Abstract
The 2021 South Kalimantan flood was recorded as the most serious ever to have taken place in the province. It occurred due to high-intensity rain during the period 10-19 January, accompanied by a spring tide. This study provides an overview of the disaster, with reference to the hydro-meteorological conditions (topography, tides, and precipitation). The method used was the analysis of the precipitation and its monthly rainfall pattern anomalies using remote sensing data. A Digital Elevation Model (DEM) was also analyzed to indicate the most noticeably flood-affected area. In certain areas, total precipitation during the ten days reached 672.8 mm, with daily precipitation peaking at 255 mm on January 14, greater than the 25-year return period value. The flood coincided with a spring tide, which peaked at 1.21 m on the evening of January 15. Using 20- year GPM data, it was found that ENSO and IOD coexisted with both the highest and lowest anomalies. With a La Niña event at the end of 2020,  a positive precipitation anomaly in 2021 was expected. The extreme precipitation is suspected to be the main driver of the  2021 South Kalimantan flood, whose impact was worsened by the spring tides. This study conducts further research on the correlation between land-use change, rainfall, spring tide and flooding in South Kalimantan. In addition, it is recommended that the government plan flood risk management by prioritizing areas based on vulnerability to climate hazards.
Keywords
Full Text:
PDFReferences
Acker, J.G., & Leptoukh G. (2007). Online Analysis Enhances Use of NASA Earth Science Data. Eos 88(2),14–17. https://doi.org/10.1029/2007EO020003
Ajiwibowo, H., & Pratama, M.B. (2020). Hydrodynamic Changes Impacted by the Waterway Capital Dredging in Cikarang Bekasi Laut Channel, West Java, Indonesia. Water Practice and Technology 15(2), 450–459. https://doi.org/10.2166/wpt.2020.032
AntaraKalsel (2021). Severe Flooding Submerges Most of S Kalimantan, Road Cut off. Available via ANTARA News Kalimantan Selatan. Retrieved January 15, 2021, from https://kalsel.antaranews.com/berita/227572/severe-flooding- submerges-most-of-s-kalimantan- road-cut-off
Balai Hidrologi dan Lingkungan Keairan (2021). Laporan Analisis Bencana Banjir, Kabupaten Banjar, Kabupaten Tanah Laut, Kabupaten Balangan , Dan Kota Banjarmasin [Flood Disaster Analysis Report, Banjar Regency, Tanah Laut Regency, Balangan Regency, and Banjarmasin City], Bandung.
BIG (2021a). DEMNAS. Retrieved January 21, 2021, from http://tides.big.go.id/DEMNAS/index.html
BIG (2021b). Online Tide Prediction/Prediksi Pasang Surut (Pasut) Retrieved January 21, 2021, from http://tides.big.go.id/pasut
BIG (2021c). Realtime Tidal Observation/Pengamatan Pasang Surut Realtime. Retrieved January 21, 2021, from http://tides.big.go.id:8888/dash/pro v/Kalsel.html
BMKG. (2021a). Data Online - Pusat Database-BMKG. Available via BMKG. Retrieved January 25, 2021, from https://dataonline.bmkg.go.id/home
BMKG (2021b). Probabilistik Curah Hujan 20 Mm (Tiap 24 Jam). Retrieved January 26, 2021, from Available via BMKG. https://www.bmkg.go.id/cuaca/prob abilistik-curah-hujan.bmkg
BNPB (2021a). Update – 10 Kabupaten/Kota Terdampak Banjir Di Kalimantan Selatan. Retrieved January 26, 2021, from https://bnpb.go.id/berita/-update- 10-kabupaten-kota-terdampak- banjir-di-kalimantan-selatan
BNPB (2021b). Ribuan Rumah Warga Sejumlah Kabupaten Di Kalimantan Selatan Dilanda Banjir. Retrieved January 26, 2021, from https://bnpb.go.id/berita/Ribuan Rumah Warga Sejumlah Kabupaten di Kalimantan Selatan Dilanda Banjir
BOM (2021). About ENSO and IOD Graphs. Retrieved January 28, 2021, from http://www.bom.gov.au/climate/ens o/indices/about.shtml
Borga, M., Anagnostou, E.N., Blöschl, G., & Creutin, J.D. (2010). Flash Floods: Observations and Analysis of Hydro-Meteorological Controls. Journal of Hydrology 394(1-2),55–59 https://doi.org/10.1016/j.jhydrol.20 10.07.048
BBPS Kalimantan Selatan (2021). Badan Pusat Statistik Provinsi Kalimantan Selatan.
Bramawanto, R., & Sagala, S.L. (2016). Meteorological and Physical Conditions of Salt Pan Areas with Filtering-Threaded Technology (TUF) in Cirebon Regency, Indonesia. Jurnal Segara 12(2), 81–90. https://doi.org/10.15578/segarav1 2i2.7678
Copernicus Sentinel (2021). Copernicus Open Access Hub. Retrieved January 29, 2021, from https://scihub.copernicus.eu/dhus/ #/home.
Deltares. (2021). Tide Stations - Delft Dashboard - Deltares Public Wiki. Retrieved January 29, 2021, from https://publicwiki.deltares.nl/displa y/DDB/Tide+Stations.
Dwirahmadi, F., Rutherford, S., Phung, D., & Chu, D., (2019). Understanding the Operational Concept of a Flood-Resilient Urban Community in Jakarta, Indonesia, from the Perspectives of Disaster Risk Reduction, Climate Change Adaptation and Development Agencies. International Journal of Environmental Research and Public Health 16(20), 3993. https://doi.org/10.3390/ijerph16203993
Fatkhuroyan (2019). Perbandingan Sebaran Curah Hujan Hasil Observasi Satelit GPM Dengan Model Cuaca WRF Studi Kasus: Siklon Tropis Cempaka Dan Dahlia 27 Nov - 3 Des 2017. Paper presented at Penggunaan Dan Pengembangan Produk Informasi Geospasial Mendukung Daya Saing Nasional, Seminar Nasional Geomatika, 2018.
GGWS (2021). El Nino and La Nina Years and Intensities . Available via GG Weather. Retrieved January 30, 2021, from https://ggweather.com/enso/oni.htm
Geoportal Kalsel, (2021), Geoservis Kalsel. Retrieved January 30, 2021, from http://geoservice.kalselprov.go.id
Hajdukiewicz, H., Wyżga, B., Mikuś, P., Zawiejska, J., & Radecki-Pawlik, A. (2016). Impact of a Large Flood on Mountain River Habitats, Channel Morphology, and Valley Infrastructure. Geomorphology 272, 55–67. https://doi.org/10.1016/j.geomorph. 2015.09.003
Harvey, L.O., Hammond, K.R., & Lusk, C.M. (1992), The Application of Signal Detection Theory to Weather Forecasting Behavior. Monthly Weather Review 120(5), 863–83. https://doi.org/10.1175/1520- 0493
Hidayat, R., & Kentaro, A. (2018). Variabilitas Curah Hujan Indonesia Dan Hubungannya Dengan ENSO/IOD Estimasi Menggunakan Data JRA-25/JCDAS. Agromet 28(1), 1 –8. https://doi.org/10.29244/j.agromet.28.1.1-8.
Hurford, A., Maksimovic, C., & Leitao, J.P. (2010). Urban Pluvial Flooding in Jakarta: Applying State-of-the-art Technology in a Data Scarce Environment. Water Science & Technology 62(10), 2246-2255. https://doi.org/10.2166/wst.2010.485
JAMSTEC (2021). JAMSTEC Visualization. Retrieved January 30, 2021, from http://www.jamstec.go.jp/virtualeart h/general/en/index.html.
JICA (2010). The Study On Guidelines For Assessing Port Development Priorities Including Acceptable Performance Levels In ASEAN. Tokyo : Mitsubishi Research Institute, Inc
KITLV(1928). Overstroomde Straten Te Barabai. Retrieved January 30, 2021, from http://hdl.handle.net/1887.1/item:7 74858.
Ko, D.H., Jeong, S.T., & Cho, H.Y. (2018). Analysis on the Estimation Errors of the Lowest and Highest Astronomical Tides for the Southwestern 2.5 GW Offshore Wind Farm, Korea. International Journal of Naval Architecture and Ocean Engineering 10(1), 85–94. https://doi.org/10.1016/j.ijnaoe.201 7.03.004
Latief, H., Putri, M., & Hanifah, F.N. (2018). Coastal Hazard Assessment in Northern part of Jakarta. Procedia Engineering 212,1279-1286. https://doi.org/10.1016/j.proeng.2018.01.165
Manalu, A. (2021). Mengkaji Penyebab Banjir Kalsel. Kalimantan Selatan
NCAR (2017). GPM: Global Precipitation Measurement Mission. Retrieved January 30, 2021, from https://climatedataguide.ucar.edu/climate-data/gpm-global- precipitation-measurement-mission.
Nurtyawan, R., & Fiscarina, N. (2020). Assessment of the Accuracy of Dem From Panchromatic Pleiades Imagery Case Study: Bandung City. West Java. International Journal of Remote Sensing and Earth Sciences (IJReSES) 17(1), 35-44 . https://doi.org/10.30536/j.ijreses.2020.v17a3329
Purwonegoro, H. (2021). Flood Mapping South Kalimantan [Image]. Retrieved January 31, 2021, from https://www.linkedin.com/
posts/hengki purwonegoro18242250_flood- mapping-south-kalimantan-activity- 6762294784892788736-wzQK.
Pratama, M.B. (2019). Tidal Flood in Pekalongan: Utilizing and Operating Open Resources for Modelling. IOP Conf.Ser.: Mat. Sci. Eng, 676, 1-10. https://doi.org/10.1088/1757-899X/676/1/012029
Putra, H.E., Putro, D.A., & Hadi, T.W. (2016), High Resolution Flood Hazard Mapping Using Two-Dimensional Hydrodynamic Model ANUGA: Case Study of Jakarta, Indonesia. The 18th International Conference on Flood Recovery, Innovation and Response , Paris, France, October 24-25, 2016. Paris: FMA.
Supari & Setiawan, N. (2013). Rainfall Variability Over Bangka Belitung Island Based On Validated TRMM Product. Jurnal Meteorologi Dan Geofisika, 14(1), 9-17. https://doi.org/10.31172/jmg.v14i1.140
Takagi, H., Esteban, M., Mikami, T., & Fujii, D. (2016). Projection of Coastal Floods in 2050 Jakarta. Urban Climate 17, 135–145. https://doi.org/10.1016/j.uclim.2016.05.003
Takagi, H., Esteban, M., Mikami, T., Pratama, M., Valenzuela, V., & Avelino, J. (2021). People's Perception of Land Subsidence, Floods, and Their Connection: A Note based on Recent Surveys in a Sinking Coastal Community in Jakarta. Ocean & Coastal Management 211, 105753. https://doi.org/10.1016/j.ocecoaman.2021.105753
Tarek, M., Brissette, F.P., & Arsenault, R. (2020). Evaluation of the ERA5 Reanalysis as a Potential Reference Dataset for Hydrological Modelling over North America. Hydrology and Earth System Sciences 24(5), 2527–2544. https://doi.org/10.5194/hess-24-2527-2020
Tirto (2021, January 31). Penyebab Banjir Kalsel Menurut Analisis LAPAN, Aktivis, Dan KLHK. Tirto. Retrieved from https://tirto.id/penyebab-banjir- kalsel-menurut-analisis-lapan- aktivis-dan-klhk-f9uk.
Trenberth, K., & NCAR. (2020). The Climate Data Guide: Nino SST Indices Nino 1+2, 3, 3.4, 4; ONI and TNI .
World Meteorological Organization. (2017). Guidelines on the Calculation of Climate Normals (2017 eds). Geneva: WMO.
Wyżga, B., Kundzewicz, Z.W., Ruiz- Villanueva, V., & Zawiejska, J. (2016). Flood Generation Mechanisms and Changes in Principal Drivers. GeoPlanet: Earth and Planetary Sciences, 0, 55–75 . https://doi.org/10.1007/978-3-3194192
.
Refbacks
- There are currently no refbacks.