Bayu Elwanto Bagus Dewanto, Retnadi Heru Jatmiko


Estimation of aboveground carbon stock on stands vegetation, especially in green open space, has become an urgent issue in the effort to calculate, monitor, manage, and evaluate carbon stocks, especially in a massive urban area such as Samarinda City, Kalimantan Timur Province, Indonesia. The use of Sentinel-1 imagery was maximised to accommodate the weaknesses in its optical imagery, and combined with its ability to produce cloud-free imagery and minimal atmospheric influence. The study aims to test the accuracy of the estimated model of above-ground carbon stocks, to ascertain the total carbon stock, and to map the spatial distribution of carbon stocks on stands vegetation in Samarinda City. The methods used included empirical modelling of carbon stocks and statistical analysis comparing backscatter values and actual carbon stocks in the field using VV and VH polarisation. Model accuracy tests were performed using the standard error of estimate in independent accuracy test samples. The results show that Samarinda Utara subdistrict had the highest carbon stock of 3,765,255.9 tons in the VH exponential model. Total carbon stocks in the exponential VH models were 6,489,478.1 tons, with the highest maximum accuracy of 87.6 %, and an estimated error of 0.57 tons/pixel.


stands vegetation; carbon stock estimation; remote sensing; Sentinel-1 imagery; Samarinda City

Full Text:



Amriyah, Q., Rahmat. A., Haris, S. D., & Rachmat, M. (2019). Analisis Perbandingan Data Level-1 Sentinel 1A/B (Data SLC dan GRD) menggunakan Software SNAP dan GAMMA [Comparative Analysis of Level-1 Sentinel 1A/B Data (Data SLC and GRD) using SNAP and GAMMA Software]. Seminar Nasional Penginderaan Jauh ke-6 Lembaga Penerbangan dan Antariksa Nasional (LAPAN).

Anderson, J. R. (1971). Land Use Classification Schemes Used in Selected Recent Geographic Applications of Remote Sensing. Photogrammetric Engineering, 37(4), 379 - 387.

Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A Land Use and Land Cover Classification System for Use with Remote Sensor Data. Geological Survey Professional Paper 964.

Asner, G. P & Mascaro, J. (2014). Mapping Tropical Forest Carbon: Calibrating Plot Estimate To A Simple Lidar Metric. Remote Sensing of Environment (140), 614 – 624.

Badan Pusat Statistik Kota Samarinda [Central Bureau of Statistics]. (2019). Kecamatan Sungai Pinang Dalam Angka Tahun 2019 [Sungai Pinang Subdistrict in Figure Year 2019]. Samarinda: BPS Kota Samarinda.

Berger, C., Werner, S., Wigley-coetsee, C., Smit, I., & Schmullius, C. (2019). Multi-Temporal Sentinel-1 Data for Wall-To-Wall Herbaceous Biomass Mapping In Kruger National Park , South Africa — First Results. IEEE Geoscience and Remote Sensing Symposium 2019, 7358–7360.

Berninger, A., Lohberger, S., Stängel, M., & Siegert, F. (2018). SAR-Based Estimation of Above-Ground Biomass and Its Changes in Tropical Forests of Kalimantan Using L- and C-Band. Remote Sensing, 10(6).

Brown, S. (1997). Estimating Biomass and Biomass Change of Tropical Forests: a Primer. Roma: FAO.

Chave, J., Rejou-Mechain, M., Burquez, A., Chidurnayo, E., Colgan, M. S., Delliti, … Vielledent, G. (2014). Improved Allometric Models to Estimate The Aboveground Biomass of Tropical Trees. Global Change Biology, 20(10), 3177 – 3190.

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 60, 27 - 46.

Danoedoro, P. 2012. Pengantar Penginderaan Jauh Digital [Introduction to Digital Remote Sensing]. Yogyakarta: Andi.

Effendi, J. (2019). Implementasi Peraturan Daerah Nomor 2 Tahun 2014 tentang Rencana Tata Ruang Wilayah Terkait Pelaksanaan Ruang Terbuka Hijau di Kota Samarinda [Implementation of Regional Law No. 2 of 2014 on Regional Spatial Planning in Green Open Space Realization in Samarinda City]. Thesis [Master’s Thesis]. Yogyakarta: Fakultas Hukum [Faculty of Law], Universitas Islam Indonesia.

Fonseca, W., Alice, F. E., & Rey-Benayas, J. M. (2012). Carbon Accumulation in Aboveground and Belowground Biomass and Soil of Different Age Native Forest Plantations In The Humid Tropical Lowlands of Costa Rica. New Forests, 43(2), 197–211.

Godwin, C., Chen, G., & Singh, K. K. (2015). The Impact Of Urban Residential Development Patterns On Forest Carbon Density: An Integration of LiDAR, Aerial Photography and Field Mensuration. Landscape and Urban Planning, 136, 97–109.

IPCC. (2006). IPCC Guidelines for National Greenhouse Gas Inventories. Hayama, Kanagawa: Institute for Global Environmental Strategies (IGES).

Jo, H. K. (2002). Impacts of Urban Greenspace On Offsetting Carbon Emissions For Middle Korea. Journal of Environmental Management, 64(2), 115–126.

Krooks, A., Kaasalainen, S., Kankare, V., Joensuu, M., Raumonen, P., & Kaasalainen, M. (2014). Tree Structure Vs. Height From Terrestrial Laser Scanning And Quantitative Structure Models. Silva Fennica, 48(2), 1–11.

Laurin, G. V., Balling, J., Corona, P., Mattioli, W., Papale, D., Puletti, N., Rizzo, M., Truckenbrodt, J., & Urban, M. (2018). Above-ground Biomass Prediction By Sentinel-1 Multitemporal Data In Central Italy With Integration Of ALOS-2 And Sentinel-2 Data. Journal of Applied Remote Sensing, 12(01), 1 - 18.

Lu, D. (2006). The Potential And Challenge Of Remote Sensing-Based Biomass Estimation. International Journal of Remote Sensing, 27(7), 1297–1328.

Margaretha, E. W. (2013). Estimasi Cadangan Karbon Vegetasi Tegakan di Kota Yogyakarta dan Sekitarnya Berbasis ALOS AVNIR-2 [Aboveground Carbon Stock Estimation of Stand Vegetation in Yogyakarta using ALOS AVNIR-2]. Skripsi [Bachelor Thesis]. Yogyakarta: Fakultas Geografi [Faculty of Geography]. Universitas Gadjah Mada.

McCoy, R. M. (2005). Field Methods in Remote Sensing. New York: The Guilford Press.

Ostadhashemi, R., Shahraji, T. R., Roehle, H., & Limaei, S. M. (2014). Estimation of Biomass And Carbon Storage Of Tree Plantations In Northern Iran. Journal of Forest Science, 60(9), 363–371.

Pratama, L. D. Y. 2019. Model Estimasi Stok Karbon Atas Permukaan Tegakan Karet (Hevea brasiliensis) menggunakan Citra Sentinel 2A Kasus di Perkebunan Karet PTPN IX Kebun Ngobo dan Kebun Getas, Kabupaten Semarang [Aboveground Carbon Stock Estimation Model of Rubber Plantations (Hevea brasiliensis) using Sentinel 2A Imagery, Case: PTPN IX Ngobo and Getas Plantations Area, Semarang Regency]. Skripsi [Bachelor’s Thesis]. Yogyakarta: Fakultas Geografi [Faculty of Geography]. Universitas Gadjah Mada.

Poudyal, N. C., Siry, J., & Bowker, J. M. (2011). Urban Forests And Carbon Markets: Buyers’ Perspectives. Journal of Forestry, 109(7), 378–385.

Santi, E., Paloscia, S., Pettinato, S., Fontanelli, G., Mura, M., Zolli, C… Chirici, G. (2017). The Potential Of Multifrequency SAR Images For Estimating Forest Biomass In Mediterranean Areas. Remote Sensing of Environment, 200(February), 63–73.

Sidiq, W. (2013). Pemanfaatan Penginderaan Jauh dan Sistem Informasi Geografis untuk Evaluasi dan Arahan Pengembangan Ruang Terbuka Hijau di Kota Semarang [Utilization of Remote Sensing and Geographic Information System for Evaluation and Recommendation of Green Open Space Development in Semarang City]. Skripsi [Bachelor’s Thesis]. Yogyakarta: Fakultas Geografi [Faculty of Geography]. Universitas Gadjah Mada.

Stickler, C. M., Nepstad, D. C., Coe, M. T., McGrath, D. G., Rodrigues, H. O., Walker, W. S., Soares-Filho, B. S., & Davidson, E. A. (2009). The Potential Ecological Costs And Cobenefits Of REDD: A Critical Review And Case Study From The Amazon Region. Global Change Biology, 15(12), 2803–2824.

Strohbach, M. W., & Haase, D. (2012). Above-ground Carbon Storage By Urban Trees In Leipzig, Germany: Analysis Of Patterns In A European City. Landscape and Urban Planning, 104(1), 95–104.

Sugiyono. (2016). Metode Penelitian Kuantitatif, Kualitatif, dan R&D [Quantitative, Qualitative, and R&D Research Method]. Bandung: Alfabeta.

Sutanto (2016). Metode Penelitian Penginderaan Jauh [Research Method of Remote Sensing]. Edisi Revisi [Revision Ed.]. Yogyakarta: Ombak.

Tavasoli, N., Arefi, H., Samiei-Esfahany, S., & Ronoud, Q. (2019). Modelling the Amount Of Carbon Stock Using Remote Sensing In Urban Forest And Its Relationship With Land Use Change. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(4/W18), 1051–1058.

Tobler, W. (1987). Measuring Spatial Resolution. Proceedings: Land Resources Information Systems Conference, Beijing, pp 12 – 16.

Van Pham, M., Pham, T. M., Viet Du, Q. V., Bui, Q. T., Van Tran, A., Pham, H. M., & Nguyen, T. N. (2019). Integrating Sentinel-1A SAR Data And GIS To Estimate Aboveground Biomass And Carbon Accumulation For Tropical Forest Types In Thuan Chau District, Vietnam. Remote Sensing Applications: Society and Environment, 14(September 2017), 148–157.

Vargas-Larreta, B., López-Sánchez, C. A., Corral-Rivas, J. J., López-Martínez, J. O., Aguirre-Calderón, C. G., & Ãlvarez-González, J. G. (2017). Allometric Equations For Estimating Biomass And Carbon Stocks In The Temperate Forests Of North- Western Mexico. Forests, 8(8), 1–20.

Walpole, R. E. (1995). Pengantar Statistika Edisi ke-3 [Introduction to Statistics 3rd Ed.]. Jakarta: Gramedia.

Wang, V., & Gao, J. (2020). Estimation of Carbon Stock In Urban Parks: Biophysical Parameters, Thresholds, Reliability, And Sampling Load By Plant Type. Urban Forestry and Urban Greening, 55, 126852.

Zaki, N. A. M., Zulkiflee, A. L., & Mohd, Z. Z. (2015). Aboveground Biomass and Carbon Stock Estimation using Double Sampling Approach and Remotely Sensed Data. Jurnal Teknologi (Sciences & Engineering) Universiti Teknologi Malaysia, 78 (5-4), 57 – 62.


  • There are currently no refbacks.