COMPARISON OF THE RADIOMETRIC CORRECTION LANDSAT-8 IMAGE BASED ON OBJECT SPECTRAL RESPONSE AND VEGETATION INDEX

Fadila Muchsin, . Supriatna, Adhi Harmoko, Indah Prasasti, Mulia Inda Rahayu, Liana Fibriawati, Kuncoro Adi Pradhono

Abstract

Landsat-8 standard level (level 1T) data received by users still in digital form can be used directly for land cover/land use mapping. These data have low radiometric accuracy when used to produce information such as vegetation indices, biomass, and land cover/land use classification. In this study, radiometric/atmospheric correction was conducted using FLAASH, 6S, DOS, TOA+BRDF and TOA method to eliminate atmospheric disturbances and compare the results with field measurements based on object spectral response and NDVI values. The results of the spectral measurements of objects in paddy fields at harvest time in the Cirebon Regency, West Java, Indonesia show that the FLAASH and 6S method have spectral responses that are close to those of objects in the field compared to the DOS, TOA and TOA+BRDF methods. For the NDVI value, the 6S method has the same tendency as the object's NDVI value in the field.


 

 

Keywords

Landsat-8, atmospheric correction, spectral response, NDVI

Full Text:

PDF

References

REFFERENCES

Chander, G., Markham, B. L. and Helder, D. L. (2009) ‘Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors’, Remote Sensing of Environment. Elsevier Inc., 113(5), pp. 893–903. doi: 10.1016/j.rse.2009.01.007.

Chen, W., Chen, W. and Li, J. (2010) ‘Comparison of surface reflectance derived by relative radiometric normalization versus atmospheric correction for generating large-scale Landsat mosaics’, Remote Sensing Letters, 1(2), pp. 103–109. doi: 10.1080/01431160903518057.

ENVI (2009) ‘ENVI Atmospheric Correction Module: QUAC and FLAASH user’s guide’, Module Version, p. 44. Available at:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:ENVI+Atmospheric+Correction+Module:+QUAC+and+FLAASH+user’s+guide#0.

Irons, J. R., Dwyer, J. L. and Barsi, J. A. (2012) ‘The next Landsat satellite: The Landsat Data Continuity Mission’, Remote Sensing of Environment. Elsevier B.V., 122, pp. 11–21. doi: 10.1016/j.rse.2011.08.026.

Jing, Z. et al. (2014) ‘A Method to Enhance the Fog Image Based on Dark Object Subtraction’, 547, pp. 2484–2487. doi: 10.4028/www.scientific.net/AMM.543-547.2484.

Ke, Y. et al. (2015) ‘Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations’, Remote Sensing of Environment. Elsevier Inc., 164, pp. 298–313. doi: 10.1016/j.rse.2015.04.004.

Kustiyo et al. (2015) ‘Annual forest monitoring as part of the Indonesia’s National Carbon Accounting System’, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(7W3), pp. 441–448. doi: 10.5194/isprsarchives-XL-7-W3-441-2015.

Liang, S., Fang, H. and Chen, M. (2001) ‘Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods’, IEEE Transactions on Geoscience and Remote Sensing, 39(11), pp. 2490–2498. doi: 10.1109/36.964986.

Lillesand, T. M., Kiefer, R. W. and Chipman, J. W. (1994) ‘LillesandKieferandChipman.pdf’, John Wiley & Sons, p. 750.

Loveland, T. R. and Dwyer, J. L. (2012) ‘Landsat: Building a strong future’, Remote Sensing of Environment. Elsevier B.V., 122(October 2000), pp. 22–29. doi: 10.1016/j.rse.2011.09.022.

Loveland, T. R. and Irons, J. R. (2016) ‘Landsat 8: The plans, the reality, and the legacy’, Remote Sensing of Environment. Elsevier B.V., 185, pp. 1–6. doi: 10.1016/j.rse.2016.07.033.

Markham, B. L. and Helder, D. L. (2012) ‘Forty-year calibrated record of earth-reflected radiance from Landsat: A review’, Remote Sensing of Environment. Elsevier B.V., 122, pp. 30–40. doi: 10.1016/j.rse.2011.06.026.

Pons, X. et al. (2014) ‘Automatic and improved radiometric correction of landsat imageryusing reference values from MODIS surface reflectance images’, International Journal of Applied Earth Observation and Geoinformation. Elsevier B.V., 33(1), pp. 243–254. doi: 10.1016/j.jag.2014.06.002.

Roy, D. P. et al. (2014) ‘Landsat-8: Science and product vision for terrestrial global change research’, Remote Sensing of Environment. Elsevier B.V., 145, pp. 154–172. doi: 10.1016/j.rse.2014.02.001.

Vermote, E. et al. (2006) ‘Second Simulation of a Satellite Signal in the Solar Spectrum - Vector (6SV)’, Spectrum, Part1(2), pp. 1–55.

Vermote, E. F. et al. (1997) ‘Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation’, Journal of Geophysical Research: Atmospheres, 102(D14), pp. 17131–17141. doi: 10.1029/97JD00201.

Vermote, E. F. et al. (1997) ‘Second simulation of the satellite signal in the solar spectrum, 6s: an overview’, IEEE Transactions on Geoscience and Remote Sensing, 35(3), pp. 675–686. doi: 10.1109/36.581987.

Refbacks

  • There are currently no refbacks.