COMPARISON OF DATA ASSIMILATION USING SURFACE OBSERVATION, UPPER AIR, AND SATELLITE RADIATION DATA ON RAINFALL PREDICTION IN THE JAMBI REGION (CASE STUDY OF HEAVY RAIN OCTOBER 20TH, 2020)
Abstract
Weather Research and Forecasting (WRF) is a mesoscale numerical weather prediction model that can provide good rainfall prediction information. The accuracy of the initial conditions and the accuracy of the parameterization scheme used in the WRF model affect the quality of the resulting rainfall prediction. Therefore it is necessary to assimilate to optimize the accuracy of the initial conditions in the model using the Three Dimensional Variational (3DVAR) assimilation technique. The purpose of this study was to determine the effect of applying the 3DVAR assimilation technique with the surface, upper air, and satellite radiation observations in predicting the occurrence of heavy rain on October 20th, 2020, in the Jambi region by first conducting a parameterization test of the cumulus and microphysical schemes. In this study, four experimental schemes were used, namely no assimilation (NON), observation data assimilation (OBS), satellite radiation data assimilation (SAT), and satellite radiation and observation data assimilation (BOTH). Each experimental model result was then verified statistically and spatially to determine the effect of the applied data assimilation. The results of this study indicate that the combination of Grell-3D and Thompson scheme shows the best performance in predicting rainfall. Then based on the spatial analysis of the SAT experiment, it is known that it can improve the model's initial conditions on the temperature and pressure parameters. Meanwhile, based on statistical verification, the SAT experiment improved the accuracy of rainfall predictions with a better forecast skill score than other experiments tested.
Keywords
Full Text:
PDFReferences
Barker, D. M., Huang, W., Guo, Y. R., Bourgeois, A. J., & Xiao, Q. N. (2004). A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Monthly Weather Review, Vol.132, No. 4.
Bauer, H. S., Schwitalla, T., Wulfmeyer, V., Bakhshaii, A., Ehret, U., Neuper, M., & Caumont, O. (2015). Quantitative precipitation estimation based on highresolution numerical weather prediction and data assimilation with WRF - a performance test. Tellus, Series A: Dynamic Meteorology and Oceanography,Vol.67, No. 1.
Burrahman, Habib, Andreas Kurniawan Silitonga, Ilham Haris Batubara, & Ahmad Fadlan. (2019). Pengaruh Asimilasi Model Cuaca Weather Research Forecast (WRF) dengan Data Radiasi Satelit Terhadap Estimasi Curah Hujan (Studi Kasus Stasiun Meteorologi Pattimura‒Ambon Tanggal 24-25 Juli 2013). Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya), 3,118.
Cardoso, R. M., Soares, P. M. M., Miranda, P. M. A., & Belo-Pereira, M. (2013). WRF high resolution simulation of Iberian mean and extreme precipitation climate. International Journal of Climatology, Vol.33, No. 11.
Fadianika, A., & Hariadi, H. (2015). Uji Sensitivitas Skema Parameterisasi Cumulus untuk Prediksi Hujan di Wilayah Jawa Timur. Jurnal Fisika dan Aplikasinya, Vol.11, No. 1.
Fatmasari, D. (2018). Perbandingan Asimilasi Data Observasi Permukaan, Udara Atas, Dan Radiasi Satelit Dengan Teknik 3DVAR Pada Model Weather Research And Forecasting Untuk Prediksi Curah Hujan Di Wilayah Jakarta. Skripsi, Sekolah Tinggi Meteorologi Klimatologi dan Geofisika.
Fatmasari, D., Saragih, I. J. A., Putra, A. W., & Nugraheni, I. R. (2017). Sensitivity Test of Betts-Miller-Janjic and Grell-3D Cumulus Schemes on WRF-ARW Model to Simulate the Heavy Rainfall Event in Lampung ( Case Study : 20 February 2017 ). Proceedings of International Conference : Problem, Solution and Development of Coastal and Delta Areas.
Golding, B., (2013), Numerical Weather Prediction NWP, Royal Meteorology Society, accessed https://www.rmets.org/weatherandclimate/weather/numerical-weather-prediction-nwp, 29 Oktober 2020.
Kurniawan, R., Hanggoro, W., Anggraeni, R., Noviati, S., Fitria, W., & Sudewi, R. S. S. (2014). Penggunaan Skema Konvektif Model Cuaca WRF (Betts Miller Janjic, Kain Fritsch Dan Grell 3d Ensemble) (Studi kasus: Surabaya dan Jakarta). Jurnal Meteorologi dan Geofisika, Vol. 15, No. 1.
Kutty, G., & Wang, X. (2015). A Comparison of the Impacts of Radiosonde and AMSU Radiance Observations in GSI Based 3DEnsVar and 3DVar Data Assimilation Systems for NCEP GFS. Advances in Meteorology.
Leutbecher, M., & Palmer, T. N. (2008). Ensemble forecasting. Journal of Computational Physics, 227, 3515–3539.
Maw, K. W., & Min, J. (2017). Impacts of Microphysics Schemes and Topography on the Prediction of the Heavy Rainfall in Western Myanmar Associated with Tropical Cyclone ROANU (2016). Advances in Meteorology.
Montavez, J. P., Lopez-Romero, J. M., Jerez, S., Gomez-Navarro, J. J., & Jimenez-Guerrero, P. (2017). How much spin-up period is really necessary in regional climate simulations? EGU General Assembly.
NCAR. (2017). Chapter 6 : WRF Data Assimilation ( WRFDA ), accessed http://www.crensed.ac.cn/portal/library/download_libfile/d414dbc1-cca9-497f-babd-aae436fa7a13, 29 Oktober 2020.
Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J. B., Gill, D. O., Ahmadov, R. (2017). The Weather Research and Forecasting Model : Overview, System Efforts, and Future Directions. Hal. 1717–1738.
Rahma, N. A. (2020). Perbandingan Asimilasi Data Pada Model WRF-ARW Untuk Prediksi Curah Hujan Di Wilayah Surabaya dan Sekitarnya. Skripsi, Sekolah Tinggi Meteorologi Klimatologi dan Geofisika.
Rajeevan, M., Kesarkar, A., Thampi, S. B., Rao, T. N., Radhakrishna, B., & Rajasekhar, M. (2010). Annales Geophysicae Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. Hal. 603–619.
Routray, A., Mohanty, U. C., Niyogi, D., Rizvi, S. R. H., & Osuri, K. K. (2010). Simulation of heavy rainfall events over Indian monsoon region using WRF-3DVAR data assimilation system. Meteorology and Atmospheric Physics, Vol. 106, No. 1.
Sagita, N., Hidayati, R., & Gustari, I. (2017). Satellite Radiance Data Assimilation for Rainfall Prediction in Java Region. Journal of Physics: Conference Series, Vol. 755, No. 1.
Skamarock, W. C., Klemp, J. B., Gill, D. O., Barker, D. M., Duda, M. G., Wang, W., & Powers, J. G. (2008). A Description of the Advanced Research WRF Version 3. NCAR TECHNICAL NOTE NCAR/TN–475+STR, (June).
Stensrud, D. J., Coniglio, M. C., Knopfmeier, K. H., & Clark, A. J. (2015). Numerical Models: Model Physics Parameterization.In Encyclopedia of Atmospheric Sciences: Second Edition (Second Edi, Vol. 4), Elsevier.
Tjasyono, B. H. K., & Harijono, S. W. B. (2006). Meteorologi Indonesia 2: Awan dan Hujan Monsun, Badan Meteorologi Klimatologi dan Geofisika, Jakarta.
Wang, W., Bruyère, C., Duda, M., Dudhia, J. B., Gill, D., Kavulich, M., Beezley, J. D. (2018). ARW Version 3 Modeling System User’s Guide. (January).
Wilks, D. S. (2006). Statistical Methods in Atmospheric Sciences Second Edition. New York: Academic Press.
Xie, Y., Shi, J., Fan, S., Chen, M., Dou, Y., dan Ji, D. (2018). Impact of radiance data assimilation on the prediction of heavy rainfall in RMAPS: A case study. Remote Sensing, Vol.10, No. 9.
Zhou, Y., dan Mu, Z. 2018. Impact of different reanalysis data and parameterization schemes on WRFdynamic downscaling in the Ili Region. Water (Switzerland), Vol. 10, No. 12.
Refbacks
- There are currently no refbacks.