BIOMASS ESTIMATION MODEL AND CARBON DIOXIDE SEQUESTRATION FOR MANGROVE FOREST USING SENTINEL-2 IN BENOA BAY, BALI

A. A. Md. Ananda Putra Suardana, Nanin Anggraini, Kholifatul Aziz, Muhammad Rizki Nandika, Azura Ulfa, Agung Dwi Wijaya, Abd. Rahman As-syakur, Gathot Winarso, Wiji Prasetio, Ratih Dewanti

Abstract

Remote sensing technology can be used to find out the potential of mangrove forests information. One of the potentials is to be able to absorb three times more CO2 than other forests. CO2 absorbed during the photosynthesis process, produces organic compounds that are stored in the mangrove forest biomass. Utilization of remote sensing technology is able to detect mangrove forest biomass using the density level of the vegetation index. This study focuses on determining the best AGB model based on the vegetation index and the ability of mangrove forests to absorb CO2. This research was conducted in Benoa Bay, Bali Province, Indonesia. The satellite image used is Sentinel-2. Classification of mangroves and non-mangroves using a multivariate random forest algorithm. Furthermore, the mangrove forest biomass model using a semi-empirical approach, while the estimation of CO2 sequestration using allometric equations. Mean Absolute Error (MAE) is used to evaluate the validation of the model results. The classification results showed that the detected area of Benoa Bay mangrove forest reached 1134 ha (OA: 0.98, kappa: 0.95). The best AGB estimation result is the DVI-based AGB model (MAE: 23,525) with a value range of 0 to 468.38 Mg/ha. DVI-based AGB derivatives are BGB with a value range of 0 to 79.425 Mg/ha, TAB with a value range of 0 to 547.8 Mg/ha, TCS with a value range of 0 to 257.47 Mg/ha, and ACS with a value range of 0 to 944.912 Mg/ha.

Keywords

Mangroves; remote sensing; vegetation indices; biomass; CO2 sequestration

Full Text:

PDF

References

Abideen, Z., Koyro, H. W., Hussain, T., Rasheed, A., Alwahibi, M. S., Elshikh, M. S., Hussain, M. I., Zulfiqar, F., Mansoor, S., & Abbas, Z. (2022). Biomass Production and Predicted Ethanol Yield Are Linked with Optimum Photosynthesis in Phragmites karka under Salinity and Drought Conditions. Plants, 11(13), 1657. https://doi.org/10.3390/plants11131657

Benson, L., Glass, L., Jones, T. G., Ravaoarinorotsihoarana, L., & Rakotomahazo, C. (2017). Mangrove carbon stocks and ecosystem cover dynamics in southwest Madagascar and the implications for local management. Forests, 8(6), 1–21. https://doi.org/10.3390/f8060190

Cairns, M. A., Brown, S., Helmer, E. H., & Baumgardner, G. A. (1997). Root biomass allocation in the world’s upland forests. Oecologia, 111(1), 1–11. https://doi.org/10.1007/s004420050201

Cerón-Souza, I., Rivera-Ocasio, E., Medina, E., Jiménez, J. A., McMillan, W. O., & Bermingham, E. (2010). Hybridization and introgression in new world red mangroves, Rhizophora (Rhizophoraceae). American Journal of Botany, 97(6), 945–957. https://doi.org/10.3732/ajb.0900172

Craft, C. (2013). Emergent macrophyte biomass production. Methods in Biogeochemistry of Wetlands, 47405(10), 137–153. https://doi.org/10.2136/sssabookser10.c9

Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293–297. https://doi.org/10.1038/ngeo1123

Fourqurean, J. W., Johnson, B., Kauffman, J. B., Kennedy, H., Lovelock, C. E., Megonigal, J. P., Rahman, A., Saintilan, N., & Simard, M. (2019). Coastal Blue Carbon. In Habitat Conservation (Issue Ci). http://www.habitat.noaa.gov/coastalbluecarbon.html

Fromard, F., Puig, H., Mougin, E., Marty, G., Betoulle, J. L., & Cadamuro, L. (1998). Structure, above-ground biomass and dynamics of mangrove ecosystems: New data from French Guiana. Oecologia, 115(1–2), 39–53. https://doi.org/10.1007/s004420050489

Fu, W., & Wu, Y. (2011). Estimation of aboveground biomass of different mangrove trees based on canopy diameter and tree height. Procedia Environmental Sciences, 10(PART C), 2189–2194. https://doi.org/10.1016/j.proenv.2011.09.343

Han, J., Kamber, M., & Pei, J. (2012). Data Mining Concepts and Techniques (3 rd Edition). In Morgan Kaufmann Publishers is an imprint of Elsevier. https://doi.org/10.1109/ICMIRA.2013.45

Hastuti, A. W., Suniada, K. I., & Islamy, F. (2017). Carbon Stock Estimation of Mangrove Vegetation Using Remote Sensing in Perancak Estuary, Jembrana District, Bali. International Journal of Remote Sensing and Earth Sciences (IJReSES), 14(2), 137. https://doi.org/10.30536/j.ijreses.2017.v14.a2841

Heumann, B. W. (2011). Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Progress in Physical Geography, 35(1), 87–108. https://doi.org/10.1177/0309133310385371

Hong-wei, Z., Huai-liang, C., & Fei-na, Z. (2019). The Modification of Difference Vegetation Index (DVI) in middle and late growing period of winter wheat and its application in soil moisture inversion. E3S Web of Conferences, 131. https://doi.org/10.1051/e3sconf/201913101098

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.

Imani, G., Boyemba, F., Lewis, S., Nabahungu, N. L., Calders, K., Zapfack, L., Riera, B., Balegamire, C., & Cuni-sanchez, A. (2017). Height-diameter allometry and above ground biomass in tropical montane forests : Insights from the Albertine Rift in Africa. Plos One, 12(6), 1–20. https://doi.org/https://doi.org/10.1371/journal.pone.0179653

Indonesian National Standard (SNI). (2011). Pengukuran dan Penghitungan Cadangan Karbon – Pengukuran Lapangan untuk Penaksiran Cadangan Karbon Hutan ( Ground Based Forest Carbon Accounting ).

IPCC. (2001). TAR AR3 Third Assesment Report-Workgroup II: Impacts, Adaptation & Vulnerability. In Cambridge University Press. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. http://www.ipcc.ch/ipccreports/tar/wg2/index.htm

Iqbal, M. H. (2020). Valuing ecosystem services of Sundarbans mangrove forest for improved conservation: approach of randomized conjoint experiment. Forestry Economics Review, 2(1), 117–132. https://doi.org/10.1108/fer-04-2020-0008

Jones, T. G., Ratsimba, H. R., Ravaoarinorotsihoarana, L., Cripps, G., & Bey, A. (2014). Ecological segregation of the late jurassic stegosaurian and iguanodontian dinosaurs of the morrison formation in north america: Pronounced or subtle? Forests, 5(1), 177–205. https://doi.org/10.3390/f5010177

Kauffman, J. B., & Cole, T. G. (2010). Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands, 30(6), 1077–1084. https://doi.org/10.1007/s13157-010-0114-y

Komiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21(4), 471–477. https://doi.org/10.1017/S0266467405002476

Kumar, L., & Mutanga, O. (2017). Remote sensing of above-ground biomass. Remote Sensing, 9(9), 1–8. https://doi.org/10.3390/rs9090935

Mahasani, I. G. A. I., Osawa, T., Adnyana, I. W. S., Suardana, A. A. M. A. P., & Chonnaniyah. (2021). Carbon stock estimation and mapping of mangrove forest using ALOS-2 PALSAR-2 in Benoa Bay Bali, Indonesia. IOP Conference Series: Earth and Environmental Science, 2(1), 429–443. https://doi.org/10.1088/1755-1315/944/1/012044

Matthews, J. B. R., Möller, V., Diemen, R. van, Fuglestvedt, J. S., Masson-Delmotte, V., Méndez, C., Semenov, S., & Reisinger, A. (2021). Annex VII: Glossary. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896.022.2215

Meng, Y., Bai, J., Gou, R., Cui, X., Feng, J., Dai, Z., Diao, X., Zhu, X., & Lin, G. (2021). Relationships between above- and below-ground carbon stocks in mangrove forests facilitate better estimation of total mangrove blue carbon. Carbon Balance and Management, 16(1), 1–14. https://doi.org/10.1186/s13021-021-00172-9

Murdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, D. C., Manuri, S., Krisnawati, H., Taberima, S., & Kurnianto, S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change, 5(12), 1089–1092. https://doi.org/10.1038/nclimate2734

Pearson, Timothy, Walker, Sarah, Brown, & Sandra. (2005). Sourcebook for Land use , Land-use change and forestry Projects. https://www.winrock.org/wp-content/uploads/2016/03/Winrock-BioCarbon_Fund_Sourcebook-compressed.pdf

Purnamasari, E., Kamal, M., & Wicaksono, P. (2021). Comparison of vegetation indices for estimating above-ground mangrove carbon stocks using PlanetScope image. Regional Studies in Marine Science, 44. https://doi.org/10.1016/j.rsma.2021.101730

Ramdani, F., Rahman, S., & Giri, C. (2018). Principal polar spectral indices for mapping mangroves forest in South East Asia: study case Indonesia. International Journal of Digital Earth, 12(10), 1103–1117. https://doi.org/10.1080/17538947.2018.1454516

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring Vegetation Systems In The Great Plains With Erts. In Remote Sensing Center. https://doi.org/10.1021/jf60203a024

Sahu, S. C., Kumar, M., & Ravindranath, N. H. (2016). Carbon stocks in natural and planted mangrove forests of Mahanadi Mangrove Wetland, East Coast of India. Current Science, 110(12), 2253–2260. https://doi.org/10.18520/cs/v110/i12/2253-2260

Sugiana, I. P., Agung, A., Andiani, E. K. A., Ayu, I. G., Pradnyandari, I., Gede, I. W., Karang, A., As-syakur, A. B. D. R., & Dharmawan, I. W. E. K. A. (2022). Spatial distribution of mangrove health index on three genera dominated zones in Benoa Bay , Bali , Indonesia. Biodiversitas, 23(7), 3407–3418. https://doi.org/10.13057/biodiv/d230717

Tarakanov, I. G., Tovstyko, D. A., Lomakin, M. P., Shmakov, A. S., Sleptsov, N. N., Shmarev, A. N., Litvinskiy, V. A., & Ivlev, A. A. (2022). Effects of Light Spectral Quality on Photosynthetic Activity, Biomass Production, and Carbon Isotope Fractionation in Lettuce, Lactuca sativa L., Plants. Plants, 11(3). https://doi.org/10.3390/plants11030441

Westlake, D. F. (1963). Comparisons of Plant Productivity. Biological Reviews, 38(3), 385–425. https://doi.org/10.1111/j.1469-185x.1963.tb00788.x

Wicaksono, P., Danoedoro, P., Hartono, & Nehren, U. (2016). Mangrove biomass carbon stock mapping of the Karimunjawa Islands using multispectral remote sensing. International Journal of Remote Sensing, 37(1), 26–52. https://doi.org/10.1080/01431161.2015.1117679

Wirasatriya, A., Pribadi, R., Iryanthony, S. B., Maslukah, L., Sugianto, D. N., Helmi, M., Ananta, R. R., Adi, N. S., Kepel, T. L., Ati, R. N. A., Kusumaningtyas, M. A., Suwa, R., Ray, R., Nakamura, T., & Nadaoka, K. (2022). Mangrove Above-Ground Biomass and Carbon Stock in the Karimunjawa-Kemujan Islands Estimated from Unmanned Aerial Vehicle-Imagery. Sustainability (Switzerland), 14(2). https://doi.org/10.3390/su14020706

Worthington, T. A., Andradi-Brown, D. A., Bhargava, R., Buelow, C., Bunting, P., Duncan, C., Fatoyinbo, L., Friess, D. A., Goldberg, L., Hilarides, L., Lagomasino, D., Landis, E., Longley-Wood, K., Lovelock, C. E., Murray, N. J., Narayan, S., Rosenqvist, A., Sievers, M., Simard, M., … Spalding, M. (2020). Harnessing Big Data to Support the Conservation and Rehabilitation of Mangrove Forests Globally. One Earth, 2(5), 429–443. https://doi.org/10.1016/j.oneear.2020.04.018

Refbacks

  • There are currently no refbacks.