MAPPING THE AIR MOISTURE CHANGE IN UNDER CANOPY TREES USING A HEMISPHERICAL AND AERIAL PHOTOGRAPH BASED ON MACHINE LEARNING APPROACHES

Mochamad Firman Ghazali

Abstract

The essential roles of trees in controlling the local climatic variation, such as air moisture, are still interesting to observe. Therefore, this study must deliver knowledge of the benefits of growing trees and enhance people's awareness of climate change adaptation. Here, the analysis requires several data fields such as hemispherical photography, an aerial photograph of a UAV, and air temperature collected using a wet and dry bulb thermometer, which has converted to air moisture. All these are considered to understand the air moisture change under the trees' canopy during a day observation. The hemispherical photography and aerial photograph of a UAV are processed to measure the tree's canopy size and then used together with interpolated air moisture to map the variation in air moisture distribution in under-canopy trees using random forest (RF) and Artificial Neural Network (ANN). The result shows that hemispherical photography describes the ability to control the air moisture change. As its size increases, the air moisture level tends to be higher. It was maintained at more than 70% compared to the area with lower canopy cover. This characteristic is similar to the pattern shown by the RF and ANN. However, the SVM has better results as it can separate air humidity in vegetated and non-vegetated areas.

Keywords

hemispherical photography; trees canopy; air humidity; spatial distribution; aerial photograph

Full Text:

PDF

References

Aslam, A., & Rana, I. A. (2022). The use of local climate zones in the urban environment: A systematic review of data sources, methods, and themes. Urban Climate, 42, 101120. https://doi.org/10.1016/J.UCLIM.2022.101120

Beniaich, A., Silva, M. L. N., Avalos, F. A. P., De Menezes, M. D., & Cândido, B. M. (2019). Determination of vegetation cover index under different soil management systems of cover plants by using an unmanned aerial vehicle with an onboard digital photographic camera. Semina:Ciencias Agrarias, 40(1), 49–66. https://doi.org/10.5433/1679-0359.2019v40n1p49

Butler, C. J., & García-Suárez, A. M. (2012). Relative humidity at Armagh Observatory, 1838-2008. International Journal of Climatology, 32(5), 657–668. https://doi.org/10.1002/joc.2302

Chatzithomas, C. D., & Alexandris, S. G. (2015). Solar radiation and relative humidity based, empirical method, to estimate hourly reference evapotranspiration. Agricultural Water Management, 152, 188–197. https://doi.org/10.1016/J.AGWAT.2015.01.019

Colunga, M. L., Cambrón-Sandoval, V. H., Suzán-Azpiri, H., Guevara-Escobar, A., & Luna-Soria, H. (2015). The role of urban vegetation in temperature and heat island effects in Querétaro city, Mexico. Atmosfera, 28(3), 205–218. https://doi.org/10.20937/ATM.2015.28.03.05

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., & Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

Demuzere, M., Kittner, J., & Bechtel, B. (2021). LCZ Generator: A Web Application to Create Local Climate Zone Maps. Frontiers in Environmental Science, 9(April). https://doi.org/10.3389/fenvs.2021.637455

Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, D., Vliet, J. Van, & Bechtel, B. (2022). A global map of Local Climate Zones to support earth system Modelling and Urban Scale Environmental Science. Earth System Science Data, 14(8), 1–57. https://doi.org/https://doi.org/10.5194/essd-14-3835-2022

Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., Gutierrez, V., Noordwijk, M. van, Creed, I. F., Pokorny, J., Gaveau, D., Spracklen, D. V., Tobella, A. B., Ilstedt, U., Teuling, A. J., Gebrehiwot, S. G., Sands, D. C., Muys, B., Verbist, B., … Sullivan, C. A. (2017). Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 43, 51–61. https://doi.org/10.1016/j.gloenvcha.2017.01.002

Harto, A. B., Prastiwi, P. A. D., Ariadji, F. N., Suwardhi, D., Dwivany, F. M., Nuarsa, I. W., & Wikantika, K. (2019). Identification of banana plants from unmanned aerial vehicles (UAV) photos using object based image analysis (OBIA) method (a case study in Sayang Village, Jatinangor District, West Java). HAYATI Journal of Biosciences, 26(1), 7–14. https://doi.org/10.4308/hjb.26.1.7

Huang, Y., Zhang, K., Yang, S., & Jin, Y. (2013). A method to measure humidity based on dry-bulb and wet-bulb temperatures. Research Journal of Applied Sciences, Engineering and Technology, 6(16), 2984–2987. https://doi.org/10.19026/rjaset.6.3682

Huang, Z., Wu, C., Teng, M., & Lin, Y. (2020). Impacts of tree canopy cover on microclimate and human thermal comfort in a shallow street canyon in Wuhan, China. Atmosphere, 11(6), 18. https://doi.org/10.3390/atmos11060588

Johansen, K., Sohlbach, M., Sullivan, B., Stringer, S., Peasley, D., & Phinn, S. (2014). Mapping banana plants from high spatial resolution orthophotos to facilitate plant health assessment. Remote Sensing, 6(9), 8261–8286. https://doi.org/10.3390/rs6098261

Jumaah, H. J., Ameen, M. H., Kalantar, B., Rizeei, H. M., & Jumaah, S. J. (2019). Air quality index prediction using IDW geostatistical technique and OLS-based GIS technique in Kuala Lumpur, Malaysia. Geomatics, Natural Hazards and Risk, 10(1), 2185–2199. https://doi.org/10.1080/19475705.2019.1683084

Kamboj, K., Sisodiya, S., Mathur, A. K., Zare, A., & Verma, P. (2022). Assessment and Spatial Distribution Mapping of Criteria Pollutants. Water, Air, and Soil Pollution, 233(3). https://doi.org/10.1007/s11270-022-05522-y

Lemmons, R. (2022). Under the canopy. Climate Policy Watcher. https://www.climate-policy-watcher.org/vegetation/under-the-canopy.html

Maryanti, M. R., Khadijah, H., Uzair, A. M., & Ghazali, M. A. R. M. M. (2016). The urban green space provision using the standards approach: issues and challenges of its implementation in Malaysia. Sustainable Development and Planning VIII, 1, 369–379. https://doi.org/10.2495/sdp160311

Meili, N., Acero, J. A., Peleg, N., Manoli, G., Burlando, P., & Fatichi, S. (2021). Vegetation cover and plant-trait effects on outdoor thermal comfort in a tropical city. Building and Environment, 195(February), 107733. https://doi.org/10.1016/j.buildenv.2021.107733

Nguyen, T. Q., Nguyen, D. H., & Nguyen, L. T. T. (2020). Personal air quality index prediction using inverse distance weighting method. CEUR Workshop Proceedings, 2882, 3–4.

Pataki, D. E., Alberti, M., Cadenasso, M. L., Felson, A. J., McDonnell, M. J., Pincetl, S., Pouyat, R. V., Setälä, H., & Whitlow, T. H. (2021). The Benefits and Limits of Urban Tree Planting for Environmental and Human Health. Frontiers in Ecology and Evolution, 9(April), 1–9. https://doi.org/10.3389/fevo.2021.603757

Peel, M. C., Finlayson, B. L., & Mcmahon, T. A. (2007). Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007

Razak, A. M. Y. (2007). Power augmentation. In Industrial Gas Turbines. Woodhead Publishing. https://doi.org/10.1533/9781845693404.2.376

Razali, M., & Wandi, R. (2019). Inverse Distance Weight Spatial Interpolation for Topographic Surface 3D Modelling. TECHSI - Jurnal Teknik Informatika, 11(3), 385. https://doi.org/10.29103/techsi.v11i3.1934

Shahidan, M. (2015). Potential of Individual and Cluster Tree Cooling Effect Performances Through Tree Canopy Density Model Evaluation in Improving Urban Microclimate. Current World Environment, 10(2), 398–413. https://doi.org/10.12944/cwe.10.2.04

Starý, K., Jelínek, Z., Kumhálova, J., Chyba, J., & Balážová, K. (2020). Comparing RGB-based vegetation indices from uav imageries to estimate hops canopy area. Agronomy Research, 18(4), 2592–2601. https://doi.org/10.15159/AR.20.169

Tasie, N. N., Israel-Cookey, C., & Banyie, L. J. (2018). The Effect of Relative Humidity on the Solar Radiation Intensity in Port Harcourt, Nigeria. International Journal of Research, 5(21), 128–136. https://journals.pen2print.org/index.php/ijr/article/view/16369

United Nations. (2021). Goal 13 | Department of Economic and Social Affairs. Sustainable Development. https://sdgs.un.org/goals/goal13

Yoshino, M. (2005). Local Climatology. In J. E. Oliver (Ed.), Encyclopedia of World Climatology (pp. 460–467). Springer Netherlands. https://doi.org/10.1007/1-4020-3266-8_128

Refbacks

  • There are currently no refbacks.