COMPARISON OF THE MANGROVE FOREST MAPPING ALGORITHMS IN KELABAT BAY USING RANDOM FOREST AND SUPPORT VECTOR MACHINES
Abstract
Keywords
Full Text:
PDFReferences
Avtar, R., Komolafe, A. A., Kouser, A., Singh, D., Yunus, A. P., Dou, J., Kumar, P., Gupta, R. Das, Johnson, B. A., Thu Minh, H. V., Aggarwal, A. K., & Kurniawan, T. A. (2020). Assessing sustainable development prospects through remote sensing: A review. In Remote Sensing Applications: Society and Environment (Vol. 20). Elsevier B.V. https://doi.org/10.1016/j.rsase.2020.100402
BSN. (2019). Standar Nasional Indonesia Ketelitian peta dasar.
Diniz, C., Cortinhas, L., Nerino, G., Rodrigues, J., Sadeck, L., Adami, M., & Souza-Filho, P. W. M. (2019). Brazilian mangrove status: Three decades of satellite data analysis. Remote Sensing, 11(7). https://doi.org/10.3390/rs11070808
FAO. (2007). The world’s mangroves 1980-2005. FAO Forestry Paper, 153.
Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: A review. In Remote Sensing (Vol. 3, Issue 5, pp. 878–928). https://doi.org/10.3390/rs3050878
Purwanto, A. D., Wikantika, K., Deliar, A., & Darmawan, S. (2023). Decision Tree and Random Forest Classification Algorithms for Mangrove Forest Mapping in Sembilang National Park, Indonesia. Remote Sensing, 15(1). https://doi.org/10.3390/rs15010016
Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000-2012. Proceedings of the National Academy of Sciences of the United States of America, 113(2), 344–349. https://doi.org/10.1073/pnas.1510272113
Romañach, S. S., DeAngelis, D. L., Koh, H. L., Li, Y., Teh, S. Y., Raja Barizan, R. S., & Zhai, L. (2018). Conservation and restoration of mangroves: Global status, perspectives, and prognosis. In Ocean and Coastal Management (Vol. 154, pp. 72–82). Elsevier Ltd. https://doi.org/10.1016/j.ocecoaman.2018.01.009
Suardana, A. A. Md. A. P., Anggraini, N., Nandika, M. R., Aziz, K., As-syakur, Abd. R., Ulfa, A., Wijaya, A. D., Prasetio, W., Winarso, G., & Dewanti, R. (2023). Estimation and Mapping Above-Ground Mangrove Carbon Stock Using Sentinel-2 Data Derived Vegetation Indices in Benoa Bay of Bali Province, Indonesia. Forest and Society, 7(1), 116–134. https://doi.org/10.24259/fs.v7i1.22062
Thakur, S., Mondal, I., Ghosh, P. B., Das, P., & De, T. K. (2020). A review of the application of multispectral remote sensing in the study of mangrove ecosystems with special emphasis on image processing techniques. In Spatial Information Research (Vol. 28, Issue 1, pp. 39–51). Springer Science and Business Media B.V. https://doi.org/10.1007/s41324-019-00268-y
Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment, 231. https://doi.org/10.1016/j.rse.2019.111223
Winarso, G., & Purwanto, A. D. (2014). EVALUATION OF MANGROVE DAMAGE LEVEL BASED ON LANDSAT 8 IMAGE. In International Journal of Remote Sensing and Earth Sciences (Vol. 11, Issue 2).
Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelssohn, I. A., & Saintilan, N. (2016). Mangrove Sedimentation and Response to Relative Sea-Level Rise. Annual Review of Marine Science, 8, 243–266. https://doi.org/10.1146/annurev-marine-122414-034025
Refbacks
- There are currently no refbacks.