COMPARISON OF THE MANGROVE FOREST MAPPING ALGORITHMS IN KELABAT BAY USING RANDOM FOREST AND SUPPORT VECTOR MACHINES

Rahmadi Rahmadi, Raldi Hendrotoro Seputro Koestoer

Abstract

One of the tropical ecosystems is the mangrove forest, which thrives on protected coastlines such as bays, estuaries, lagoons, and rivers. These are usually found in the intertidal zone. Mangroves are a valuable natural resource because they stabilize coastlines, prevent erosion, retain sediment and nutrients, protect against storms, regulate floods and currents, sequester carbon, maintain water quality, serve as spawning grounds for fish and other marine life, and provide food For plankton. With over 59.8% of the total area of mangroves on the planet, Indonesia has some of the largest mangrove forests in the world. With the case study of Kelabat Bay in Bangka Regency and the Bangka Belitung Islands, this study compares the use of random forest (RF) techniques and support vector machines (SVM) for mapping mangrove forests. Landsat-9 imagery from 2022, taken via the Google Earth Engine (GEE), is the data source used in this study. This study utilizes computer programming and accuracy testing. As a result, RF detected mangrove forests covering an area of approximately 67 ha (OA: 0.932), while SVM detected mangrove forests covering an area of approximately 62 ha (OA: 0.912).

Keywords

mangrove, mapping, remote sensing, machine learning, random forest, support vector machine, kelabat bay

Full Text:

PDF

References

Avtar, R., Komolafe, A. A., Kouser, A., Singh, D., Yunus, A. P., Dou, J., Kumar, P., Gupta, R. Das, Johnson, B. A., Thu Minh, H. V., Aggarwal, A. K., & Kurniawan, T. A. (2020). Assessing sustainable development prospects through remote sensing: A review. In Remote Sensing Applications: Society and Environment (Vol. 20). Elsevier B.V. https://doi.org/10.1016/j.rsase.2020.100402

BSN. (2019). Standar Nasional Indonesia Ketelitian peta dasar.

Diniz, C., Cortinhas, L., Nerino, G., Rodrigues, J., Sadeck, L., Adami, M., & Souza-Filho, P. W. M. (2019). Brazilian mangrove status: Three decades of satellite data analysis. Remote Sensing, 11(7). https://doi.org/10.3390/rs11070808

FAO. (2007). The world’s mangroves 1980-2005. FAO Forestry Paper, 153.

Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: A review. In Remote Sensing (Vol. 3, Issue 5, pp. 878–928). https://doi.org/10.3390/rs3050878

Purwanto, A. D., Wikantika, K., Deliar, A., & Darmawan, S. (2023). Decision Tree and Random Forest Classification Algorithms for Mangrove Forest Mapping in Sembilang National Park, Indonesia. Remote Sensing, 15(1). https://doi.org/10.3390/rs15010016

Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000-2012. Proceedings of the National Academy of Sciences of the United States of America, 113(2), 344–349. https://doi.org/10.1073/pnas.1510272113

Romañach, S. S., DeAngelis, D. L., Koh, H. L., Li, Y., Teh, S. Y., Raja Barizan, R. S., & Zhai, L. (2018). Conservation and restoration of mangroves: Global status, perspectives, and prognosis. In Ocean and Coastal Management (Vol. 154, pp. 72–82). Elsevier Ltd. https://doi.org/10.1016/j.ocecoaman.2018.01.009

Suardana, A. A. Md. A. P., Anggraini, N., Nandika, M. R., Aziz, K., As-syakur, Abd. R., Ulfa, A., Wijaya, A. D., Prasetio, W., Winarso, G., & Dewanti, R. (2023). Estimation and Mapping Above-Ground Mangrove Carbon Stock Using Sentinel-2 Data Derived Vegetation Indices in Benoa Bay of Bali Province, Indonesia. Forest and Society, 7(1), 116–134. https://doi.org/10.24259/fs.v7i1.22062

Thakur, S., Mondal, I., Ghosh, P. B., Das, P., & De, T. K. (2020). A review of the application of multispectral remote sensing in the study of mangrove ecosystems with special emphasis on image processing techniques. In Spatial Information Research (Vol. 28, Issue 1, pp. 39–51). Springer Science and Business Media B.V. https://doi.org/10.1007/s41324-019-00268-y

Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment, 231. https://doi.org/10.1016/j.rse.2019.111223

Winarso, G., & Purwanto, A. D. (2014). EVALUATION OF MANGROVE DAMAGE LEVEL BASED ON LANDSAT 8 IMAGE. In International Journal of Remote Sensing and Earth Sciences (Vol. 11, Issue 2).

Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelssohn, I. A., & Saintilan, N. (2016). Mangrove Sedimentation and Response to Relative Sea-Level Rise. Annual Review of Marine Science, 8, 243–266. https://doi.org/10.1146/annurev-marine-122414-034025

Refbacks

  • There are currently no refbacks.