PENGGUNAAN BINDER HTPB BERENERGI TINGGI UNTUK MENINGKATKAN ENERGETIK PROPELAN KOMPOSIT

Luthfia Hajar Abdillah, Heri Budi Wibowo, Kendra Hartaya

Abstract

Untuk mendapatkan performa propelan yang lebih energetik, penelitian terbaru menunjukkan bahwa diperlukan penggunaan material-material yang bersifat lebih energetik, misalnya penggunaan binder energetik. Pengawasan yang ketat atas peredaran material energetik seperti ini cukup menyulitkan untuk mendapatkan material-material tersebut. Oleh karena itu kemandirian untuk memiliki material tersebut sudah seharusnya menjadi perhatian. Binder propelan  komposit yang paling banyak digunakan saat ini adalah HTPB yang bersifat non-energetik. Untuk membuatnya lebih berenergi tinggi dapat dilakukan dengan menambahkan gugus yang bersifat energetik seperti gugus nitro, namun tetap aman digunakan (bersifat stabil). Tulisan ini mengkaji  potensi konversi binder HTPB menjadi nitro-HTPB yang bersifat energetik, meliputi material, peralatan, dan metode yang dapat diaplikasikan di Indonesia. Prosesnya adalah nitrasi HTPB menjadi nitro-HTPB.  Berdasarkan kajian energetiknya, nitro-HTPB memiliki potensi untuk meningkatkan sifat energetik propelan padat komposit. Metode proses pembuatan nitro-HTPB yang paling efektif dan optimal adalah proses nitrasi dengan menggunakan bahan sodium nitrit pada suhu rendah (0oC).

kata kunci : HTPB, nitro-HTPB, binder energetik, propelan

Keywords

HTPB, nitro-HTPB, binder energetik, propelan

Full Text:

PDF

References

Abdullah, M., Gholamian, F., and Zarei, A. R., 2014. Investigation of Composite Solid Propellants Based on Nitrated Hydroxyl-Terminated Polybutadiene Binder. Journal of Propulsion and Power, 30(3), 862–864. https://doi.org/10.2514/1.B35117

Abusaidi, H., Ghaieni, H. R., & Ghorbani, M., 2017. Influences of NCO/OH and triol/diol ratios on the mechanical properties of nitro-HTPB based polyurethane elastomers. Iranian Journal of Chemistry and Chemical Engineering, 36(5), 55–63.

Abusaidi, H., Ghorbani, M., & Ghaieni, H. R., 2017. Development of Composite Solid Propellant Based on Nitro Functionalized Hydroxyl-Terminated Polybutadiene. Propellants, Explosives, Pyrotechnics, 42(6), 671–675. https://doi.org/10.1002/prep.201600120

Agrawal, J. P., 2010. High Energi Materials: Propellants, Explosives and Pyrotechnics. Wiley-VCH Verlag GmbH & Co.

Ashrafi, M., Fakhraian, H., and Dehnavi, M. A., 2016. Synthesis , Characterization and Properties of Nitropolybutadiene as Energetik Plasticizer for NHTPB Binder. Propellants, Explosives, Pyrotechnics, 1–8. https://doi.org/10.1002/prep.201600057

Badgujar, D. ., Talawar, M. ., Zarko, V., and Mahulikar, P., 2017. New Directions in the Area of Modern Energetik Polymers : An Overview. Combustion, Explosion, and Shock Waves, 53(4), 371–387. https://doi.org/10.1134/S0010508217040013

Badgujar, D. M., Talawar, M. B., Asthana, S. N., and Mahulikar, P. P., 2008. Advances in science and technology of modern energetik materials: An overview. Journal of Hazardous Materials, 151(2–3), 289–305. https://doi.org/10.1016/j.jhazmat.2007.10.039

Betzler, F. M., Hartdegen, V. A., Klapötke, T. M., and Sproll, S. M., 2016. A new energetik binder: Glycidyl nitramine polymer. Central European Journal of Energetik Materials, 13(2), 289–300. https://doi.org/10.22211/cejem/64984

Booth, G., 2012. Nitro Compounds, Aromatic. Ullmann’s Encyclopedia of Industrial Chemistry, Vol. 24 (Vol. 24). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim DOI: https://doi.org/10.1002/14356007.a17

Chien, J. C. W., Kohara, T., Lillya, C. P., Sarubbi, T., Su, B.-H., and Miller, R. S., 1980. Phase transfer-catalyzed nitromercuration of diene polymers. Journal of Polymer Science: Polymer Chemistry Edition, 18(8), 2723–2729. https://doi.org/10.1002/pol.1980.170180828

Colclough, M. E., Desai, H., Millar, R. W., Paul, N. C., Stewart, M. J., and Golding, P., 1993. Energetik Polymers as Binders in Composite Propellants and Explosives. Polymers for Advanced Technologies, 5(September), 554–560.

Colclough, M. E., and Paul, N. C., 1996. Nitrated Hydroxy-Terminated Polybutadiene : Synthesis and Properties. In A. L (Ed.), ACS Symposium Series (pp. 97–103). Washington, DC: American Chemical Society. https://doi.org/10.1021/bk-1996-0623.ch010

Florczak, B., Bogusz, R., Skupiński, W., Chmielarek, M., and Dzik, A., 2015. Study of the effect of nitrated hydroxyl-terminated Polybutadiene (NHTPB) on the properties of heterogeneous rocket propellants. Central European Journal of Energetik Materials, 12(4), 841–854.

Gupta, B. ., Kumar, V., and Shivhare, N., 2014. Rheological Studies on Virgin, Plasticized and Solid Filled HTPB Binder System. Global Journal of Advanced Engineering Technologies and Sciences, 1(2), 41–48. Retrieved from http://www.gjaets.com

Komarov, V. F., and Shandakov, V. A. 1999. Solid Fuels, their properties, and applications. Combustion, Explosion, and Shock Waves, 35(2), 2–6. https://doi.org/https://doi.org/10.1007/BF02674426

Kshirsagar, D. R., Jain, S, Bhandarkar S., Vemuri, M. and Mehilal, 2017. Studies on the Effect of Nano-MnO2 in HTPB-based Composite Propellant Formulations, Cent. Eur. J. Energ. Mater. ,14(3), 589-604.

Kulkarni, A. A., 2014. Continuous flow nitration in miniaturized devices. Beilstein Journal of Organic Chemistry, 10, 405–424. https://doi.org/10.3762/bjoc.10.38

Kumari A, Maurya M, Jain S and Bhattacharya B 2017 Nano-Ammoinum Perchlorate: Preparation, Characterization, and Evaluation in Composite Propellant Formulation Journal of Energetik Materials 31(3) 115-119.

Kumari, A., Kurva, R., Jain, S. and Bhattacharya, B., 2015. Evaluation of nanoalumunium in Composite Propellant Formulation Using Bicurative System, Journal of Propulsion and Power, 31(1), 393-399.

Rahman, A., Chin, J. and Cheah, K.H. 2018, Prilling and Coating of AND Solid Green Propellant in Toluene Mixture Using Ultrasound Sonication, Aerospace, 5(1), 29-35.

Ramesh, K., Jawalkar, S. N., Sachdeva, S., Mehilal, and Bhattacharya, B., 2012. Development of a Composite Propellant Formulation with a High Performance Index Using a Pressure Casting Technique. Central European Journal of Energetik Materials, 9(1), 49–58.

Ramezani, A. and Rothe, H., 2017. Simulation Based Early Prediction of Rocket, Artillery, and Mortar Trajectories and Real Time Optimization for Counter RAM Systems, Mathematical Problems in Engineering, 12, 1-8.

Restasari, A., Hartaya, K., Ardianingsih, R. and Abdillah, L.H., 2015. Effects of toluene diisocyanate`s chemical structure on polyurethane`s viscosity and mechanical properties for propellant, Proceedings ISAST III-2015 International Seminar of Aerospace Science and Technology - 2015, 59-67.

Shee, S. K., Shah, P. N., Athar, J., Dey, A., Soman, R. R., Sikder, A. K., and Banerjee, S., 2016. Understanding the Compatibility of the Energetik Binder PolyNIMMO with Energetik Plasticizers: Experimental and DFT Studies. Propellants, Explosives, Pyrotechnics, 42(2), 167–174. https://doi.org/10.1002/prep.201600058

Salgado, M.C., Belderrain, M.S.N. and Devezas, T.C., 2018. Space Propulsion: a Survey Study about Current and Future Technologies, J. aerosp. Technol. Manag., 10, 1-10.

Sariak, G., 2017. Between a Rocket and a Hard Place: Militar Space Technology and Stability in International Relations, The internastional Journal of Space Polytics & Policy, 15(1), 51-64.

Shekhar Pant, C., Santosh, M. S. S. N. M., Banerjee, S., and Khanna, P. K., 2013. Single step synthesis of nitro-functionalized hydroxyl-terminated polybutadiene. Propellants, Explosives, Pyrotechnics, 35(6), 748–753.

Timnat, Y.M., 1987. Advanced Chemical Rocket Propulsion. Academic Press, 132-135.

Wang, Q., Wang, L., Zhang, X., and Mi, Z. 2009. Thermal stability and kinetic of decomposition of nitrated HTPB. Journal of Hazardous Materials, 172(2–3), 1659–1664. https://doi.org/10.1016/j.jhazmat.2009.08.040

Wibowo, H.B. 2015(a). Pengembangan Propelan Mandiri untuk Roket Komposit. Prosiding JASAKIAI 21 November 2013. 157-162.

Wibowo, H. B., 2015(b). Pemisahan Polimer HTPB Melalui Kolom Resin Berpori Untuk Merubah Distribusi Berat Molekul HTPB, Jurnal Teknologi Dirgantara, 13(1), 15-24.

Wibowo, H. B., 2015(c). Peningkatan Sifat Mekanik Propelan Mandiri Berbasis Pengaruh Bilangan OH terhadap Kinerja Propelan: Teknologi Roket Sonda Indonesia 2015, Penerbit Indonesia Book Project, 273-290.

Wibowo, H.B., 2015(d). Reduksi Struktur Vynil Untuk Peningkatan Kualitas HTPB Dengan Penggeseran Keseimbangan Penataulangan Isomer: Buku Bunga Rampai Teknologi Pesawat Terbang Sebagai Mitra Pengembang Teknologi Roket dan Satelit Nasional, Penerbit Indonesia Book Project, 291-306.

Wibowo, H.B., 2016. Kontrol Kualitas Bahan Baku Propelan. Penerbit Indonesia Book Project. 134-139.

Refbacks

  • There are currently no refbacks.