METODA COROTATIONAL BEAM 2D UNTUK ANALISIS STATIK STRUKTUR NONLINIER GEOMETRIK

Novi Andria, Lavi Rizki Zuhal, Leonardo Gunawan, Hari Muhammad

Abstract

Makalah ini membahas sebuah metoda corotational beam dua dimensi (CBM 2D) yang dapat digunakan untuk analisis statik struktur yang nonlinier secara geometri. Kombinasi antara formulasi corotational beam dan Euler-Bernouli beam Theory (EBT) membuat implementasi numerik metoda ini menjadi sangat sederhana dengan beban komputasi yang rendah sehingga sangat praktis untuk diaplikasikan. Akurasi dan efisiensi metoda ini terverifikasi melalui beberapa uji numerik yang dilakukan pada beberapa model uji yang terdapat pada literatur. Metoda ini pun mampu memberikan hasil yang akurat untuk kasus extensible beam dan struktur beam yang dibebani follower load. Hasil penelitian ini memverifikasi validitas, efisiensi, dan kepraktisan dari metoda yang dikembangkan.

Keywords

corotational beam, CBM 2D, nonlinear geometrik, analisis statik stuktur

Full Text:

PDF

References

Amoozgar, M. R., dan Shahverdi, H. (2016). Analysis of nonlinear fully intrinsic equations of geometrically exact beams using generalized differential quadrature method. Acta Mechanica, Vol. 227 No. 5, 1265-1277. https://doi.org/10.1007/s00707-015-1528-7

Arbind, A., Reddy, J. N., dan Srinivasa, A. R. (2017). Nonlinear analysis of beams with rotation gradient dependent potential energy for constrained micro-rotation. European Journal of Mechanics, A/Solids, Vol. 65, 178-194.

https://doi.org/10.1016/j.euromechsol.2017.04.002

Babilio, E., dan Lenci, S. (2017). On the notion of curvature and its mechanical meaning in a geometrically exact plane beam theory. International Journal of Mechanical Sciences, Vol. 128-129, 277-293. https://doi.org/10.1016/j.ijmecsci.2017.03.031

Beheshti, A. (2016). Large deformation analysis of strain-gradient elastic beams. Computers and Structures, Vol. 177, 162-175.

https://doi.org/10.1016/j.compstruc.2016.07.013

Beléndez, T. , Neipp, C., dan Beléndez, A. (2003). Numerical and Experimental Analysis of a Cantilever Beam: A Laboratory Project to Introduce Geometric Nonlinearity in Mechanics of Materials. International Journal of Engineering Education, Vol. 19 No. 6, 885-892.

Chen, L. (2010). An integral approach for large deflection cantilever beams. International Journal of Non-Linear Mechanics, Vol. 45 No. 3, 301-305. https://doi.org/10.1016/j.ijnonlinmec.2009.12.004

Jeon, H.M., Lee, Y., Lee, P.S., dan Bathe, K.J. (2015). The MITC3+ shell element in geometric nonlinear analysis. Computers and Structures, Vol. 146, 91-104. https://doi.org/10.1016/ j.compstruc.2014.09.004

Ko, Y., Lee, P. S., dan Bathe, K. J. (2017). The MITC4+ shell element in geometric nonlinear analysis. Computers and Structures, Vol. 185, 1-14.

https://doi.org/10.1016/j.compstruc.2017.01.015

Kondoh, K., dan Atluri, S. N. (1987). Large-deformation, elasto-plastic analysis of frames under nonconservative loading, using explicitly derived tangent stiffnesses based on assumed stresses. Computational Mechanics, Vol. 2 No.1, 1-25.

https://doi.org/10.1007/BF00282040

Le, T. N. (2013). Nonlinear dynamics of lexible structures using corotational beam elements. Ph.D Thesis, KTH Royal Institute of Technology, Stockholm, Sweden.

https://tel.archives-ouvertes.fr/tel-00954739

Le, T. N., Battini, J. M., dan Hjiaj, M. (2011). Efficient formulation for dynamics of corotational 2D beams. Computational Mechanics, Vol. 48 No. 2, 153-161.

https://doi.org/10.1007/s00466-011-0585-6

Le, T. N., Battini, J. M., dan Hjiaj, M. (2012). Dynamics of 3D beam elements in a corotational context: A comparative study of established and new formulations. Finite Elements in Analysis and Design, Vol. 61, 97-111. https://doi.org/10.1016/j.finel.2012.06.007

Levyakov, S. V. (2015). Formulation of a geometrically nonlinear 3D beam finite element based on kinematic-group approach. Applied Mathematical Modelling, Vol. 39 No. 20, 6207-6222. https://doi.org/10.1016/j.apm.2015.01.064

Masjedi, P. K., dan Ovesy, H. R. (2015). Chebyshev collocation method for static intrinsic equations of geometrically exact beams. International Journal of Solids and Structures, Vol. 54, 183-191. https://doi.org/10.1016/j.ijsolstr.2014.10.016

Masjedi, P. K., dan Ovesy, H. R. (2015). Large deflection analysis of geometrically exact spatial beams under conservative and nonconservative loads using intrinsic equations. Acta Mechanica, Vol. 226 No. 6, 1689-1706.

https://doi.org/10.1007/s00707-014-1281-3

Nanakorn, P., dan Vu, L. N. (2006). A 2D field-consistent beam element for large displacement analysis using the total Lagrangian formulation. Finite Elements in Analysis and Design, Vol. 42 No. 14-15, 1240-1247.

https://doi.org/10.1016/j.finel.2006.06.002

Ranjan, R. (2011). Nonlinear finite element analysis of bending of straight beams Using hp-spectral approximations. Journal of Solid Mechanics, Vol. 3 No. 1, 96-113.

Yaw, L. L. (2009). 2D Corotational Beam Formulation, 1–17.

https://gab.wallawalla.edu/~louie.yaw/Co-rotational_docs/2Dcorot_beam.pdf, diakses pada tanggal 26 Maret 2016.

Zhou, X., Huang, K., dan Li, Z. (2018). Geometrically nonlinear beam analysis of composite wind turbine blades based on quadrature element method. International Journal of Non-Linear Mechanics, Vol. 104, 87-99. https://doi.org/10.1016/j.ijnonlinmec.2018.05.007

Zupan, E., Saje, M., dan Zupan, D. (2012). Quaternion-based dynamics of geometrically nonlinear spatial beams using the Runge-Kutta method. Finite Elements in Analysis and Design, Vol. 54, 48-60.

https://doi.org/10.1016/j.finel.2012.01.007

Refbacks

  • There are currently no refbacks.