METODA COROTATIONAL BEAM 2D UNTUK ANALISIS STATIK STRUKTUR NONLINIER GEOMETRIK
Abstract
Keywords
Full Text:
PDFReferences
Amoozgar, M. R., dan Shahverdi, H. (2016). Analysis of nonlinear fully intrinsic equations of geometrically exact beams using generalized differential quadrature method. Acta Mechanica, Vol. 227 No. 5, 1265-1277. https://doi.org/10.1007/s00707-015-1528-7
Arbind, A., Reddy, J. N., dan Srinivasa, A. R. (2017). Nonlinear analysis of beams with rotation gradient dependent potential energy for constrained micro-rotation. European Journal of Mechanics, A/Solids, Vol. 65, 178-194.
https://doi.org/10.1016/j.euromechsol.2017.04.002
Babilio, E., dan Lenci, S. (2017). On the notion of curvature and its mechanical meaning in a geometrically exact plane beam theory. International Journal of Mechanical Sciences, Vol. 128-129, 277-293. https://doi.org/10.1016/j.ijmecsci.2017.03.031
Beheshti, A. (2016). Large deformation analysis of strain-gradient elastic beams. Computers and Structures, Vol. 177, 162-175.
https://doi.org/10.1016/j.compstruc.2016.07.013
Beléndez, T. , Neipp, C., dan Beléndez, A. (2003). Numerical and Experimental Analysis of a Cantilever Beam: A Laboratory Project to Introduce Geometric Nonlinearity in Mechanics of Materials. International Journal of Engineering Education, Vol. 19 No. 6, 885-892.
Chen, L. (2010). An integral approach for large deflection cantilever beams. International Journal of Non-Linear Mechanics, Vol. 45 No. 3, 301-305. https://doi.org/10.1016/j.ijnonlinmec.2009.12.004
Jeon, H.M., Lee, Y., Lee, P.S., dan Bathe, K.J. (2015). The MITC3+ shell element in geometric nonlinear analysis. Computers and Structures, Vol. 146, 91-104. https://doi.org/10.1016/ j.compstruc.2014.09.004
Ko, Y., Lee, P. S., dan Bathe, K. J. (2017). The MITC4+ shell element in geometric nonlinear analysis. Computers and Structures, Vol. 185, 1-14.
https://doi.org/10.1016/j.compstruc.2017.01.015
Kondoh, K., dan Atluri, S. N. (1987). Large-deformation, elasto-plastic analysis of frames under nonconservative loading, using explicitly derived tangent stiffnesses based on assumed stresses. Computational Mechanics, Vol. 2 No.1, 1-25.
https://doi.org/10.1007/BF00282040
Le, T. N. (2013). Nonlinear dynamics of lexible structures using corotational beam elements. Ph.D Thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
https://tel.archives-ouvertes.fr/tel-00954739
Le, T. N., Battini, J. M., dan Hjiaj, M. (2011). Efficient formulation for dynamics of corotational 2D beams. Computational Mechanics, Vol. 48 No. 2, 153-161.
https://doi.org/10.1007/s00466-011-0585-6
Le, T. N., Battini, J. M., dan Hjiaj, M. (2012). Dynamics of 3D beam elements in a corotational context: A comparative study of established and new formulations. Finite Elements in Analysis and Design, Vol. 61, 97-111. https://doi.org/10.1016/j.finel.2012.06.007
Levyakov, S. V. (2015). Formulation of a geometrically nonlinear 3D beam finite element based on kinematic-group approach. Applied Mathematical Modelling, Vol. 39 No. 20, 6207-6222. https://doi.org/10.1016/j.apm.2015.01.064
Masjedi, P. K., dan Ovesy, H. R. (2015). Chebyshev collocation method for static intrinsic equations of geometrically exact beams. International Journal of Solids and Structures, Vol. 54, 183-191. https://doi.org/10.1016/j.ijsolstr.2014.10.016
Masjedi, P. K., dan Ovesy, H. R. (2015). Large deflection analysis of geometrically exact spatial beams under conservative and nonconservative loads using intrinsic equations. Acta Mechanica, Vol. 226 No. 6, 1689-1706.
https://doi.org/10.1007/s00707-014-1281-3
Nanakorn, P., dan Vu, L. N. (2006). A 2D field-consistent beam element for large displacement analysis using the total Lagrangian formulation. Finite Elements in Analysis and Design, Vol. 42 No. 14-15, 1240-1247.
https://doi.org/10.1016/j.finel.2006.06.002
Ranjan, R. (2011). Nonlinear finite element analysis of bending of straight beams Using hp-spectral approximations. Journal of Solid Mechanics, Vol. 3 No. 1, 96-113.
Yaw, L. L. (2009). 2D Corotational Beam Formulation, 1–17.
https://gab.wallawalla.edu/~louie.yaw/Co-rotational_docs/2Dcorot_beam.pdf, diakses pada tanggal 26 Maret 2016.
Zhou, X., Huang, K., dan Li, Z. (2018). Geometrically nonlinear beam analysis of composite wind turbine blades based on quadrature element method. International Journal of Non-Linear Mechanics, Vol. 104, 87-99. https://doi.org/10.1016/j.ijnonlinmec.2018.05.007
Zupan, E., Saje, M., dan Zupan, D. (2012). Quaternion-based dynamics of geometrically nonlinear spatial beams using the Runge-Kutta method. Finite Elements in Analysis and Design, Vol. 54, 48-60.
https://doi.org/10.1016/j.finel.2012.01.007
Refbacks
- There are currently no refbacks.