Identification of Aircraft Parameters in the Lateral-Directional Flight Dimension with Variation of Control Input

Eries Bagita Jayanti, Fuad Surastyo Pranoto, Singgih Satrio Wibowo


In this research, the process of identifying aircraft parameters is carried out for the lateral-directional dimension by notice the variations of the given control surface deflection input. The inputs are pulse, doublet and 3-2-1-1. Among the input forms, it is not known which form is most suitable for the lateral-directional dimension. Simulation is done by varying the input deflection control surface and simulation time. The input given is deflection of the aileron and rudder control surfaces. This research uses the equation error method with the ordinary least square estimation technique. The purpose of this research to identify the most suitable input for the identification of parameters in the lateral-directional dimension and to observe the effect of simulation time. The aircraft used is the Lockheed C-5 Galaxy. The simulation results show that the combination of the 3-2-1-1 input form in the aileron deflection surface and the input pulse shape on the rudder has an error value of about 0.09. This value is smaller among all cases seen from the error matrix A. Based on that, the combination of the two inputs is the most suitable for the lateral-directional dimension than the other inputs that have been given.


aircraft; identification of parameters; model; input variations; lateral-directional

Full Text:



Chen, R. (1975). Input design for Aircraft Parameter Identification: using time optimal control formulation: using time optimal control formulation. Advisory Group for Aerospace Research and Development.

Denis-Vidal, L., Joly-Blanchard, G., Jauberthie, C., & Coton, P. (2001). Aircraft Parameter Estimation: Successive Steps. IFAC Proceedings Volumes, 34(6), 335–340.

Dr.P, H., Breeman, J. H., J, K., Klein, V., Koehler, R., Lliff, K, W., Mulder, J. A., Plaetschke, E., Ross, A. ., & Vervrugge, R. . (1979). Parameter Identification: In North Atlantic Treaty Organization (AGARD LECT, Issue 104). Technical Editing and Reproduction Ltd Harford House.

Force, U. . (2011). C-5 Galaxy Information. U.S AIR FORCE. available:

Gupta, N., & Hall, W. E. (1975). Input Design for Identification of Aircraft Stability and Control Derivatives. NASA Contractor Reports, February 1975.

Jayanti, E. B., Atmasari, N., Mardikasari, H., Rizaldi, A., Pranoto, F. S., & Wibowo, S. S. (2019). Pengaruh Masukan Kendali Terhadap Hasil Identifikasi Parameter Pesawat Udara Konfigurasi Konvensional Matra Terbang Longitudinal. Jurnal Teknologi Dan Sistem Komputer, 7(1), 25–30.

Klein, V., & Morelli, E. A. (2006). Aircraft System Identification: Theory and Practice.

Licitra, G., Bürger, A., Williams, P., Ruiterkamp, R., & Diehl, M. (2018). Control Engineering Practice Optimal input design for autonomous aircraft ✩. Control Engineering Practice, 77(September 2017), 15–27.

Morelli, E. a. (1990). Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programmng Principles Lockheed Engineering and Sciences Company Hampton , VA Vladislav Klein Hampton , VA AlAA Atmospheric Flight Mechanics Conference.

Mulder, J. A., Sridhar, J. K., & Breeman, J. H. (1990). Identification of Dynamic Systems - Part 2: Nonlinear Analysis and Applications to Aircraft Manoeuvre Design (Issue c).

Plaetschke, E., Mulder, J. A., & Breeman, J. H. (1983). Flight Test Results of Five Input Signals for Aircraft Parameter Identification. IFAC Proceedings Volumes, 2(4), 1149–1154.

Remple, R. K., & Tischler, M. B. (2006). Aircraft and Rotorcraft System Identification. Aircraft and Rotorcraft System Identification.


  • There are currently no refbacks.