Study on The Development of Guidance System Technology for 122-140 mm Artillery Rocket
Abstract
Keywords
Full Text:
PDFReferences
A. E. Gamble and P. N. Jenkins. (2000). Low Cost Guidance for the Multiple Launch Rocket System (MLRS) Artillery Rocket. in IEEE.. Position Location and Navigation Symposium (Cat. No. 00CH37062), 2000, pp. 193–199.
B. Pavkovic, M. Pavic, and D. Cuk. (2012). Enhancing the Precision of Artillery Rockets Using Pulsejet Control Systems with Active Damping. Sci. Tech. Rev., vol. 62, no. 2, pp. 10–19, 2012.
B. T. Burchett. (2014). Predictive Optimal Pulse-Jet Control for Symmetric Projectiles. in AIAA atmospheric flight mechanics conference, p. 883.
F. Mingireanu et al. (2014). Trajectory Modeling of GRAD Rocket with Low-Cost Terminal Guidance Upgrade Coupled to RangecIncrease Through Step-Like Thrust-Curves,†no. October. doi: 10.21608/asat.2013.22052.
L. Zhao. (2018). Acceleration Autopilot for a Guided Spinning Rocket via Adaptive Output Feedback. Aerosp. Sci. Technol., vol. 1, pp. 1–12, doi: 10.1016/j.ast.2018.04.012.
M. Gao, Y. Zhang, and S. Yang. (2015). Firing Control Optimization of Impulse Thrusters for Trajectory Correction Projectiles,†vol. 2015.
M. Gao, Y. Zhang, S. Yang, and D. Fang. (2016). Trajectory Correction Capability Modeling of the Guided Projectiles with Impulse Thrusters,†no. February
M. K. Siddiq, F. J. Cheng, and Y. W. Bo. (2012). State Dependent Riccati Equation Based Roll Autopilot for 122mm Artillery Rocket,†vol. 6, no. 12, pp. 2814–2822.
M. K. Siddiq, F. J. Cheng, and Y. W. Bo. (2013). SDRE Based Integrated Roll , Yaw and Pitch Controller Design for 122 mm Artillery Rocket. vol. 415, pp. 200–208, doi: 10.4028/www.scientific.net/AMM.415.200.
N. Gligorijević, S. Antonović, S. Živković, B. Pavković, and V. Rodić. (2016). Thermal and Acceleration Load Analysis of New 122 mm Rocket Propellant Grain. vol. 66, no. 3, pp. 3–11.
O. S. Dullum, K. Fulmer, N. R. Jenzen-Jones, C. Lincoln-Jones, D. G. Palacio, and N. R. Jenzen-Jones. (2017). Indirect Fire: A technical Analysis of the Employment, Accuracy, and Effects of Indirect-Fire Artillery Weapons. Armament Res. Serv. Spec. Report, Perth, Aust., pp. 77–81,
P. Solano-López, R. de Celis, M. Fuentes, L. Cadarso, and A. Barea. (2019). Strategies for High Performance GNSS/IMU Guidance, Navigation and Control of Rocketry. in Proceedings of the 8th European Conference for Aeronautics and Space Sciences, Madrid, Spain, pp. 1–4.
Q. Guo, W. Song, M. Gao, and D. Fang. (2016). Advanced Guidance Law Design for Trajectory-Corrected Rockets with Canards under Single Channel Control.
R. de Celis and L. Cadarso. (2018). GNSS/IMU Laser Quadrant Detector Hybridization Techniques for Artillery Rocket Guidance. Nonlinear Dyn., vol. 91, no. 4, pp. 2683–2698.
R. de Celis and L. Cadarso. (2018). Hybridized Attitude Determination Techniques to Improve Ballistic Projectile Navigation, Guidance and Control. Aerosp. Sci. Technol., vol. 77, pp. 138–148.
R. de Celis, L. Cadarso, and J. Sánchez. (2017). Guidance And Control for High Dynamic Rotating Artillery Rockets. Aerosp. Sci. Technol., vol. 64, pp. 204–212.
R. Głębocki and M. Jacewicz. (2020). Parametric Study of Guidance of a 160-mm Projectile Steered with Lateral Thrusters. Aerospace, vol. 7, no. 5, 2020, doi: 10.3390/aerospace7050061.
R. Ozog, M. Jacewicz, and R. Glebocki. (2020). Modified Trajectory Tracking Guidance for Artillery Rocket. J. Theor. Appl. Mech., vol. 58, no. 3, pp. 611–622, doi: 10.15632/jtam-pl/121981.
S. Mandic. (2016). Dispersion Reduction of Artillery Rockets Guided by Flight Path Steering Method,†Aeronaut. J., vol. 120, no. 1225, p. 435.
S. Yang. (2020). Impact-Point-Based Guidance of a Spinning Artillery Rocket Using Canard Cyclic Control. J. Guid. Control. Dyn., no. 1, pp. 1–8, 2020, doi: 10.2514/1.G004956.
S. Yang. (2020). Impact-Point-Based Guidance of a Spinning Artillery Rocket Using Canard Cyclic Control. J. Guid. Control. Dyn., no. 1, pp. 1–8, 2020, doi: 10.2514/1.G004956.
Sutrisno. (2019). Laporan Akuntabilitas Kinerja Instansi Pemerintah Tahun 2019. [Online]. Available:https://kinerja.lapan.go.id/getfilepublic/public/LAKIN-98579424-Lakin Pustekroket 2019.pdf.
W. Zhou, S. Yang, and L. Zhao. (2016). Retuning the Actuator Proportional – Integral – Derivative Controller of Spinning Missiles. vol. 0, no. 5, pp. 1–9, doi: 10.1177/0954410016668909.
Z. Guo, X. Yao, and X. Zhang. (2016). Robust Gain Scheduled Longitudinal Autopilot Design for Rockets During the Sustaining Phase. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., vol. 230, no. 10, pp. 1154–1163, doi: 10.1177/0959651816670758.
Z. Shi, L. Zhao, and Y. Zhu. (2018). Robust Adaptive Output Feedback Control for a Guided Spinning Rocket. vol. 2018.
Refbacks
- There are currently no refbacks.